Question #228181

If a firm is producing in the long run using capital and labor inputs, how the least cost 

combination of the inputs will be determined? Show graphically and mathematically.


1
Expert's answer
2021-08-30T17:45:13-0400

min(L,K)wL+rK....(1.1)\frac{min}{(L,K)} ​ wL+rK ....(1.1)

Considering;q=f=(L,K)...(1.2)Considering; q=f=(L,K)... (1.2)TheThe LagrangianLagrangian FunctionFunction CanbeCan be DefineDefine asas

(L,K,λ)=wL+rKλ(f(L,K)q)....(1.3)∧(L,K,λ)=wL+rK−λ(f(L,K)−q) ....(1.3)where;λ=>Lagrangemultiplierwhere; λ => Lagrange multiplier

The initial order conditions for an interior solution when L > 0 and K > 0 include:

L=0w=λf(L,K)L.....(1.4)\frac{∂∧}{∂L} ​ =0⇒w=\frac{λ∂f(L,K)}{∂L} ​ ..... (1.4)


L=0r=λf(L,K)L......(1.5)\frac{∂∧}{∂L} ​ =0⇒r= \frac{λ∂f(L,K)}{∂L} ​ ...... (1.5)


L=0Q=λf(L,K)L...(1.6)\frac{∂∧}{∂L}=0⇒Q= \frac{λ∂f(L,K)}{∂L} ... (1.6)


Based on the 6th module


MPL=f(L,K)LandMPK=f(L,K)KMPL= \frac{∂f(L,K)}{∂L} ​ and MPK=\frac{∂f(L,K)}{∂K} ​

Substituting 1.4 as well as 1.5 to eliminate Lagrange multiplier yields (expression 1.1):


MPlMPk=wrrw........(1.7)\frac{MPl}{MPk} ​ =\frac{w}{r} r w ​ ........ (1.7)


While 1.6 tends to be the constraint:

q=f(L,K)........(1.8)q=f(L,K) ........(1.8)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS