Derive the budget constraint:
I = PxX + PyY
600 = X + 2Y
The utility maximizing rule is where ("\\frac{MUx}{MUy}) = (\\frac{Px}{Py})": TU(x,y) = 3x2y
MUx =Â "\\frac{\\partial U} {\\partial x} = 6xy"
MUy =Â "\\frac{\\partial U} {\\partial y} = 3x^{2}"
"\\frac{Px}{Py} = \\frac{1}{2}"
"\\frac{6xy}{3x^{2} } = \\frac{1}{2}"
"\\frac{2y}{x } = \\frac{1}{2}"
Y =Â "\\frac{x}{4}"
Substitute in the budget constraint:
600 = X + 2Y
600 = X + 2("\\frac{x}{4}")
Multiply both sides by 4:
2400 = 4X + 2X
2400 = 6X
X = 400
Y =Â "\\frac{x}{4}"Â =Â "\\frac{400}{4}"Â = 100
TU(x,y) = (400,100)
The optimum amount of X and Y that the consumer will consume at equilibrium = 400 and 100
Â
MRTSxy =Â "\\frac{MUx}{MUy}"
MUx = 6xy
MUy = 3x2
MRTSxy =Â "\\frac{6xy}{3x^{2} }"Â =Â "\\frac{2y}{x }"Â = 2(100)/(400) =Â "\\frac{1}{2 }"
MRTSx,y =Â "\\frac{1}{2 }"
Comments
Leave a comment