Derive the budget constraint:
I = PxX + PyY
600 = X + 2Y
The utility maximizing rule is where (MUyMUx)=(PyPx): TU(x,y) = 3x2y
MUx = ∂x∂U=6xy
MUy = ∂y∂U=3x2
PyPx=21
3x26xy=21
x2y=21
Y = 4x
Substitute in the budget constraint:
600 = X + 2Y
600 = X + 2(4x)
Multiply both sides by 4:
2400 = 4X + 2X
2400 = 6X
X = 400
Y = 4x = 4400 = 100
TU(x,y) = (400,100)
The optimum amount of X and Y that the consumer will consume at equilibrium = 400 and 100
MRTSxy = MUyMUx
MUx = 6xy
MUy = 3x2
MRTSxy = 3x26xy = x2y = 2(100)/(400) = 21
MRTSx,y = 21
Comments