Question #227385
Suppose that the total utility function of a consumer is given by TU(x,y) = 3x2 y and the prices of X and Y are 1 Birr and 2 Birr per unit, respectively. If the income of the consumer is 600 Birr and if he spends all of his income on the consumption of commodities of X and Y, find the optimum amount of X and Y that the consumer will consume at equilibrium and find MRTSx,y.
1
Expert's answer
2021-08-20T09:19:22-0400

Derive the budget constraint:

I=Px×X+Py×Y600=X+2×YI=Px\times X+Py\times Y\\600=X+2\times Y

The utility maximizing rule is where

(MUxMUy)=(PxPy)(\frac{MUx}{MUy})=(\frac{Px}{Py})

TU(x,y)=3×x2×yTU(x,y)=3\times x^2\times y

MUx=Ux=6×x×yMUx=\frac{\partial U}{\partial x}=6\times x\times y

MUy=Uy=3×x2MUy=\frac{\partial U}{\partial y}=3\times x^2

PxPy=12\frac{Px}{Py}=\frac{1}{2}

6×x×y3×x2=122×yx=12\frac{6\times x \times y}{3\times x^2}=\frac{1}{2}\\\frac{2\times y}{x}=\frac{1}{2}

Y=x4Y=\frac{x}{4}

Substitute in the budget constraint:

600=X+2×Y600=X+2\times Y

600=X+2(x4)600=X+2(\frac{x}{4})

Multiply both sides by 4:

2400=4×X+2×X2400=6×XX=400Y=X4=4004=1002400=4\times X+2\times X\\2400=6\times X\\X=400\\Y=\frac{X}{4}=\frac{400}{4}=100

TU(x,y)=(400,100)TU(x,y)=(400,100)

The optimum amount of X and Y that the consumer will consume at equilibrium = 400 and 100

MRTSxy=MUxMUyMUx=6×x×yMUy=3×x2MRTSxy =\frac{MUx}{MUy}\\MUx=6\times x \times y\\MUy=3\times x^2

MRTSxy=6×x×y3×x2=2×yx=2(100400)=12MRTSxy=12MRTSxy=\frac{6\times x \times y}{3\times x^2}=\frac{2\times y}{x}=2(\frac{100}{400})=\frac{1}{2}\\MRTSxy=\frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS