Derive the budget constraint:
I=Px×X+Py×Y600=X+2×Y
The utility maximizing rule is where
(MUyMUx)=(PyPx)
TU(x,y)=3×x2×y
MUx=∂x∂U=6×x×y
MUy=∂y∂U=3×x2
PyPx=21
3×x26×x×y=21x2×y=21
Y=4x
Substitute in the budget constraint:
600=X+2×Y
600=X+2(4x)
Multiply both sides by 4:
2400=4×X+2×X2400=6×XX=400Y=4X=4400=100
TU(x,y)=(400,100)
The optimum amount of X and Y that the consumer will consume at equilibrium = 400 and 100
MRTSxy=MUyMUxMUx=6×x×yMUy=3×x2
MRTSxy=3×x26×x×y=x2×y=2(400100)=21MRTSxy=21
Comments