Derive the budget constraint:
"I=Px\\times X+Py\\times Y\\\\600=X+2\\times Y"
The utility maximizing rule is where
"(\\frac{MUx}{MUy})=(\\frac{Px}{Py})"
"TU(x,y)=3\\times x^2\\times y"
"MUx=\\frac{\\partial U}{\\partial x}=6\\times x\\times y"
"MUy=\\frac{\\partial U}{\\partial y}=3\\times x^2"
"\\frac{Px}{Py}=\\frac{1}{2}"
"\\frac{6\\times x \\times y}{3\\times x^2}=\\frac{1}{2}\\\\\\frac{2\\times y}{x}=\\frac{1}{2}"
"Y=\\frac{x}{4}"
Substitute in the budget constraint:
"600=X+2\\times Y"
"600=X+2(\\frac{x}{4})"
Multiply both sides by 4:
"2400=4\\times X+2\\times X\\\\2400=6\\times X\\\\X=400\\\\Y=\\frac{X}{4}=\\frac{400}{4}=100"
"TU(x,y)=(400,100)"
The optimum amount of X and Y that the consumer will consume at equilibrium = 400 and 100
"MRTSxy =\\frac{MUx}{MUy}\\\\MUx=6\\times x \\times y\\\\MUy=3\\times x^2"
"MRTSxy=\\frac{6\\times x \\times y}{3\\times x^2}=\\frac{2\\times y}{x}=2(\\frac{100}{400})=\\frac{1}{2}\\\\MRTSxy=\\frac{1}{2}"
Comments
Leave a comment