Answer to Question #206436 in Microeconomics for daniel

Question #206436

1.              For a monopolist firm the demand and the total cost functions are given as Q = 20- 0.5P and TC= 4Q2-8Q+15, respectively. (8 marks)

Find

a)       the optimum quantity and the optimum price level

b)      the profit/loss on these levels

c)       at what price should the monopolist shut down?

d)      Show the economic profit (loss) of the firm in a graphic representation


1
Expert's answer
2021-06-14T12:20:42-0400

Q=200.5PTC=4Q28Q+15Q=20-0.5P\\TC=4Q^2-8Q+15


a)

Q=200.5P0.5P=20Q    P=20Q0.5Q=20-0.5P\\0.5P=20-Q\\\implies P=\frac{20-Q}{0.5}

    402QTR=P×QTR=(402Q)Q\implies 40-2Q\\TR=P\times Q\\TR=(40-2Q)Q


MR=dTRdQMR=404QandTC=4Q28QMC=dTCdQ=8Q8MR=\frac{dTR}{dQ}\\MR=40-4Q\\and\\TC=4Q^2-8Q\\MC=\frac{dTC}{dQ}=8Q-8


Equilibrium

MR=MC    404Q=8Q8    40+8=8Q+4Q    12Q=48    Q=4812=4MR=MC\\\implies40-4Q=8Q-8\\\implies40+8=8Q+4Q\\\implies12Q=48\\\implies Q=\frac{48}{12}=4


Optimum quantity

Q=4P=402(Q)=402(4)=408P=32Q=4\\P=40-2(Q)\\=40-2(4)\\=40-8\\P=32


(b)now

TR=P×Q=32×4=128TC=4Q28Q+15=4(42)8(4)+15TC=47profit=TRTC=12847=81TR=P\times Q=32\times 4=128\\TC=4Q^2-8Q+15\\=4(4^2)-8(4)+15\\TC=47\\profit=TR-TC=128-47=81


c)

TC=4Q28Q+15VC=4Q28QAVC=VCQ=4Q28QQAVC=4Q8TC=4Q^2-8Q+15\\VC=4Q^2-8Q\\AVC=\frac{VC}{Q}=\frac{4Q^2-8Q}{Q}\\AVC=4Q-8


for P<AVC


    402Q<4Q+2Q    40+8<4Q+2Q    48<6Q    486<Q    8<Q\implies40-2Q<4Q+2Q\\\implies40+8<4Q+2Q\\\implies48<6Q\\\implies \frac{48}{6}<Q\\\implies8<Q


for Q>8 we have P<AVC

let Q=8


P=402QP=402(8)P=4016    P=24P<24P=40-2Q\\P=40-2(8)\\P=40-16\\\implies P=24\\P<24

firm shut down


d)

ATC=TCQ=4Q28Q+15Q=4Q8+15QATC=4(4)8154=11.75ATC=\frac{TC}{Q}=\frac{4Q^2-8Q+15}{Q}\\=4Q-8+\frac{15}{Q}\\ATC=4(4)-8\frac{15}{4}=11.75




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment