Question #196097

QUESTION 1

A firm uses a single input labour to produce output q according to the production

𝑞 = 8√𝐿

The commodity sells for R150 per unit and the wage rtae is R75 per hour.

a) Find the profit maximizing quantity of L (3)

b) Find the profit maximizing quantity of q and the level of maximum profit. (5)

c) Suppose now the firm is taxed at R30 per unit of output and that the wage rate is subsidized

at a rate of R15 per hour. Assume that the firm is a price taker, so the price of the producer

remains at R150. Find the new profit maximizing levels of L, q and profit. (6)

d) Nowsupposethefirmisrequiredtopaya20percenttaxonitsprofits,Findthenewprofit maximizing levels of L, q and profit.


1
Expert's answer
2021-05-24T13:33:20-0400

Solution:

a.). The profit maximizing quantity of L: This is where the firm’s marginal revenue product of labor (MRP) equals the wage (W).

MRPL=WMRP_{L} = W

MRPL=MPL×PMRP_{L} = MPL\times P

P=Price  of  the  commodity=150P = Price \;of\;the\;commodity = 150

W=75W = 75

MPL=QL=4L1/2MPL = \frac{\partial Q} {\partial L} = \frac{4}{L^{1/2} }


Therefore:Therefore:

MRPL=WMRP_{L} = W

(4L1/2)×150=75(\frac{4}{L^{1/2} })\times 150 = 75


600L1/2=75\frac{600}{L^{1/2} } = 75


75L1/2=60075L^{1/2} = 600


L1/2=60075=8L^{1/2} = \frac{600}{75} =8

Square  both  sides:Square\; both \;sides:

L=64L = 64


The  quantity  of  labor  that  will  maximize  profit=64The \;quantity\; of \;labor \;that \;will \;maximize\; profit = 64


b.). Profit maximizing quantity of q and the level of maximum profit:

Q=8LQ = 8\sqrt{L}


Substitute  L  in  the  equation:Substitute\; L \;in\; the \;equation:

Q=864Q = 8\sqrt{64}


Q=8×8=64Q = 8\times8 = 64


Profit  maximizing  quantity  of  q=64Profit \;maximizing\; quantity\; of\; q = 64


The  level  of  maximum  profit=Price×QuantityThe \;level\; of\; maximum\; profit = Price\times Quantity


Profit=150×64=9,600Profit = 150\times64 = 9,600


The  level  of  maximum  profit=R9,600The\; level\; of\; maximum\; profit = R9,600


c.). MRPL=WMRP_{L} = W

MRPL=MPL×PMRP_{L} = MPL\times P

P=Price  of  the  commodity=150P = Price \;of\;the\;commodity = 150

W=7515=60W = 75 - 15 = 60

MPL=QL=4L1/2MPL = \frac{\partial Q} {\partial L} = \frac{4}{L^{1/2} }


Therefore:Therefore:

MRPL=WMRP_{L} = W

(4L1/2)×150=60(\frac{4}{L^{1/2} })\times 150 = 60


600L1/2=60\frac{600}{L^{1/2} } = 60


60L1/2=60060L^{1/2} = 600


L1/2=60060=10L^{1/2} = \frac{600}{60} =10

Square  both  sides:Square\; both \;sides:

L=100L = 100


The  new  quantity  of  labor  that  will  maximize  profit=100The \; new\;quantity\; of \;labor \;that \;will \;maximize\; profit = 100

To get the new profit maximizing quantity of q and the level of maximum profit:

Q=8LQ = 8\sqrt{L}


Substitute  L  in  the  equation:Substitute\; L \;in\; the \;equation:

Q=8100Q = 8\sqrt{100}


Q=8×10=80Q = 8\times10 = 80


Profit  maximizing  quantity  of  q=80Profit \;maximizing\; quantity\; of\; q = 80


The  level  of  maximum  profit=Price×QuantityThe \;level\; of\; maximum\; profit = Price\times Quantity


Profit=150×80=12,000Profit = 150\times80 = 12,000


The  level  of  maximum  profit=R12,000The\; level\; of\; maximum\; profit = R12,000


d.). New  price=150+(20%  tax  increase)=180New\;price = 150 + (20 \% \;tax\;increase) = 180

MRPL=WMRP_{L} = W

MRPL=MPL×PMRP_{L} = MPL\times P

P=Price  of  the  commodity=180P = Price \;of\;the\;commodity = 180

W=7515=60W = 75 - 15 = 60

MPL=QL=4L1/2MPL = \frac{\partial Q} {\partial L} = \frac{4}{L^{1/2} }


Therefore:Therefore:

MRPL=WMRP_{L} = W

(4L1/2)×180=60(\frac{4}{L^{1/2} })\times 180 = 60


720L1/2=60\frac{720}{L^{1/2} } = 60


60L1/2=72060L^{1/2} = 720


L1/2=72060=12L^{1/2} = \frac{720}{60} =12

Square  both  sides:Square\; both \;sides:

L=144L = 144


The  new  quantity  of  labor  that  will  maximize  profit=144The \; new\;quantity\; of \;labor \;that \;will \;maximize\; profit = 144

To get the new profit maximizing quantity of q and the level of maximum profit:

Q=8LQ = 8\sqrt{L}


Substitute  L  in  the  equation:Substitute\; L \;in\; the \;equation:

Q=8144Q = 8\sqrt{144}


Q=8×12=96Q = 8\times12 = 96


Profit  maximizing  quantity  of  q=96Profit \;maximizing\; quantity\; of\; q = 96


The  level  of  maximum  profit=Price×QuantityThe \;level\; of\; maximum\; profit = Price\times Quantity


Profit=180×96=17,280Profit = 180\times96 = 17,280


The  level  of  maximum  profit=R17,280The\; level\; of\; maximum\; profit = R17,280

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS