Question #195962

Given a firms demand function Q-90+2P=0 and it's average cost function AC=Q²-8Q+57+2/Q. Find the level of output which maximises marginal cost.


1
Expert's answer
2021-05-25T16:55:43-0400

Given Information

Demand function

Q90+2P=0Q-90+2P=0

Average cost function

AC=Q28Q+57+2QAC=Q²-8Q+57+\frac{2}{Q} 

Total cost=AC×quantityTotal\space cost = AC \times quantity

        =(Q28Q+57+2Q)×Q=( Q²-8Q+57+\frac{2}{Q} ) \times Q

=Q38Q2+57Q+2=Q^{3} - 8Q^{2} +57Q + 2

      Differentiate Total Cost with respect of Quantity

MC=δTCδQMC = \frac{\delta TC}{\delta Q}

MC=Q38Q2+57Q+2QMC = \frac{Q^{3} − 8Q^{2} +57Q + 2}{Q}

=3Q216Q+57= 3Q^{2} -16Q +57

To calculate Maximization of MC of output we equate Mc with 0

MC = 0

3Q216Q+57=03Q^{2} -16Q +57 = 0

a = 3

b = -16

c = 57

b24ac=(16)24×3×57b^{2} - 4ac = (-16)2 - 4 \times 3\times 57

=256684= 256 - 684

=428.= -428.

b±b24ac2a\frac{−b ±√b2 − 4ac}{2a}


 =(16)±4282x3= \frac{−(−16) ±√ −428}{2 x 3}

=36.68i= 36.68i

And another value will be -4.68i

 Negative output is not possible hence the 36.68 output will be maximize MC.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS