Given a firms demand function Q-90+2P=0 and it's average cost function AC=Q²-8Q+57+2/Q. Find the level of output which maximises marginal cost.
Given Information
Demand function
"Q-90+2P=0"
Average cost function
"AC=Q\u00b2-8Q+57+\\frac{2}{Q}"
"Total\\space cost = AC \\times quantity"
"=( Q\u00b2-8Q+57+\\frac{2}{Q} ) \\times Q"
"=Q^{3} - 8Q^{2} +57Q + 2"
Differentiate Total Cost with respect of Quantity
"MC = \\frac{\\delta TC}{\\delta Q}"
"MC = \\frac{Q^{3} \u2212 8Q^{2} +57Q + 2}{Q}"
"= 3Q^{2} -16Q +57"
To calculate Maximization of MC of output we equate Mc with 0
MC = 0
"3Q^{2} -16Q +57 = 0"
a = 3
b = -16
c = 57
"b^{2} - 4ac = (-16)2 - 4 \\times 3\\times 57"
"= 256 - 684"
"= -428."
"\\frac{\u2212b \u00b1\u221ab2 \u2212 4ac}{2a}"
"= \\frac{\u2212(\u221216) \u00b1\u221a \u2212428}{2 x 3}"
"= 36.68i"
And another value will be -4.68i
Negative output is not possible hence the 36.68 output will be maximize MC.
Comments
Leave a comment