Given the cost function is
TC = 6L + 3K
Find out the optimal quantities of the two factor using Lagrangian method, if it is given that output is equal to 13.46 = L3/4 . K1/4.
Given,
"TC=6L+3K"
"13.46=L^{\\frac{3}{4}}K^{\\frac{1}{4}}"
Using Lagrangian method
L*= minimise cost subject to output constraint
"L^*=6L+3K-\\lambda[L^{\\frac{3}{4}}K^{\\frac{1}{4}}-13.46]"
"\\frac{\\delta L^*}{\\delta L}=6-\\lambda[\\frac{3}{4}L^{\\frac{-1}{4}}K^{\\frac{1}{4}}]=0"
"\\frac{6(4)}{3L^{\\frac{-1}{4}}K^{\\frac{1}{4}}}=\\lambda"
"8(\\frac{L}{K})^{\\frac{1}{4}}=\\lambda............................................................(1)"
"\\frac{\\delta L}{\\delta K}=3-\\lambda[\\frac{1}{4}L^{\\frac{3}{4}}K^{\\frac{1}{4}}]=0"
"\\frac{3(4)}{L^{\\frac{3}{4}}K^{\\frac{-3}{4}}}=\\lambda"
"12(\\frac{K}{L})^{\\frac{3}{4}}=\\lambda"
equating
"\\lambda'^s, (1) \\& (2)"
"8(\\frac{L}{K})^{\\frac{1}{4}}=12(\\frac{K}{L})^{\\frac{3}{4}}"
"8L=12K"
"L=\\frac{6}{4}K=\\frac{3}{2}K"
"L=1.5K"
Comments
Leave a comment