Answer to Question #187140 in Microeconomics for sad

Question #187140

Given the cost function is

TC = 6L + 3K

Find out the optimal quantities of the two factor using Lagrangian method, if it is given that output is equal to 13.46 = L3/4 . K1/4.



1
Expert's answer
2021-05-04T07:19:06-0400

Given,

TC=6L+3KTC=6L+3K

13.46=L34K1413.46=L^{\frac{3}{4}}K^{\frac{1}{4}}

Using Lagrangian method

L*= minimise cost subject to output constraint

L=6L+3Kλ[L34K1413.46]L^*=6L+3K-\lambda[L^{\frac{3}{4}}K^{\frac{1}{4}}-13.46]


δLδL=6λ[34L14K14]=0\frac{\delta L^*}{\delta L}=6-\lambda[\frac{3}{4}L^{\frac{-1}{4}}K^{\frac{1}{4}}]=0


6(4)3L14K14=λ\frac{6(4)}{3L^{\frac{-1}{4}}K^{\frac{1}{4}}}=\lambda


8(LK)14=λ............................................................(1)8(\frac{L}{K})^{\frac{1}{4}}=\lambda............................................................(1)


δLδK=3λ[14L34K14]=0\frac{\delta L}{\delta K}=3-\lambda[\frac{1}{4}L^{\frac{3}{4}}K^{\frac{1}{4}}]=0


3(4)L34K34=λ\frac{3(4)}{L^{\frac{3}{4}}K^{\frac{-3}{4}}}=\lambda


12(KL)34=λ12(\frac{K}{L})^{\frac{3}{4}}=\lambda


equating

λs,(1)&(2)\lambda'^s, (1) \& (2)


8(LK)14=12(KL)348(\frac{L}{K})^{\frac{1}{4}}=12(\frac{K}{L})^{\frac{3}{4}}


8L=12K8L=12K


L=64K=32KL=\frac{6}{4}K=\frac{3}{2}K


L=1.5KL=1.5K


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment