Find the optimum level of output and profit from the cost function
TC = 50 + 6Q2
 and price
P = 100 – 4Q
Also derive marginal cost and marginal revenue
"TC=50+6Q^2"
"P=100-4Q"
"MC=\\frac {d(TC)}{dQ}=0+12Q=12Q"
At profit max point; "100-4Q=12Q"
"=100=12Q+4Q"
"=\\frac{100}{16}=Q"
Optimal level of output ; "Q=6.25"
ii. Total Revenue =Price"\\times"Quantity
At "Q=6.25"
"TR=[100(4\\times6.25)]\\times6.25"
"=468.75"
Total cost (TC) "=50+6(6.25)^2"
"=284.375"
Therefore; "profit=TR-TC"
"=468.75-284.375"
"Profit=184.375"
Deriving Marginal cost and Marginal Revenue.
Given that; "P=100-4Q"
Multiply both sides by "Q"
"PQ=TR=100Q-4Q^2"
"=MR=\\frac{d(TR)}{dQ}=(100\\times1)-(4\\times2)Q^2-^1"
"MR=100-8Q"
"MC=" "\\frac {d(TC)}{dQ}=0+12Q=12Q"
"MC=12Q" .
Comments
Leave a comment