Question #187136

Find the optimum level of output and profit from the cost function

TC = 50 + 6Q2

 and price

P = 100 – 4Q

Also derive marginal cost and marginal revenue


1
Expert's answer
2021-04-30T10:51:16-0400

TC=50+6Q2TC=50+6Q^2

P=1004QP=100-4Q


MC=d(TC)dQ=0+12Q=12QMC=\frac {d(TC)}{dQ}=0+12Q=12Q


At profit max point; 1004Q=12Q100-4Q=12Q


=100=12Q+4Q=100=12Q+4Q

=10016=Q=\frac{100}{16}=Q

Optimal level of output ; Q=6.25Q=6.25


ii. Total Revenue =Price×\timesQuantity

At Q=6.25Q=6.25


TR=[100(4×6.25)]×6.25TR=[100(4\times6.25)]\times6.25

=468.75=468.75

Total cost (TC) =50+6(6.25)2=50+6(6.25)^2

=284.375=284.375


Therefore; profit=TRTCprofit=TR-TC

=468.75284.375=468.75-284.375


Profit=184.375Profit=184.375


Deriving Marginal cost and Marginal Revenue.

Given that; P=1004QP=100-4Q

Multiply both sides by QQ

PQ=TR=100Q4Q2PQ=TR=100Q-4Q^2

=MR=d(TR)dQ=(100×1)(4×2)Q21=MR=\frac{d(TR)}{dQ}=(100\times1)-(4\times2)Q^2-^1


MR=1008QMR=100-8Q



MC=MC= d(TC)dQ=0+12Q=12Q\frac {d(TC)}{dQ}=0+12Q=12Q


MC=12QMC=12Q .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS