Question #163318

Q. Given the demand and supply equations: Qxd=s-kPx-jM, Qxs=-h+bPx + cW where represents income and represents the wage rate:

·  Calculate the impact of a change in income on the equilibrium price and quantity.

·  Will this impact be larger or smaller if the value of is decreased?

Draw diagram(s) indicating all results



1
Expert's answer
2021-02-22T14:03:36-0500

The demand equation is : QxD=skPxjMQ_x^D = s - kP_x - jM

The supply equation is : QxS=h+bPx+cWQ_x^S = -h + bP_x + cW

Here, M represents income and W represents the wage rate.

At equilibrium:

QxD=QxSskPxjM=h+bPx+cWbPx+kPx=sjM+hcWPx(b+k)=sjM+hcWPx=(sjM+hcW)(b+k)Q=sk(sjM+hcW)(b+k)jMQ=s(kskjM+khkcW)(b+k)jMQ_x^D = Q_x^S s - kP_x - jM = -h + bP_x + cW \\ bP_x + kP_x = s - jM + h - cW \\ P_x(b + k) = s - jM + h - cW \\ P_x* = \frac{(s - jM + h - cW)}{(b + k)} \\ Q* = s - \frac{k(s - jM + h - cW)}{(b + k)} - jM \\ Q* = s - \frac{(ks - kjM + kh - kcW)}{(b + k)} - jM

Here, PxP_x* and Q* are the equilibrium price and quantity.

If income (M) changes by dM,

dPx=jdM(b+k)dP_x* = \frac{-jdM}{(b + k)} (since, other parameters are constant)

dPxdM=j(b+k)<0dQ=kjdM(b+k)jdMdQ=dM(kj(b+k)j)dQdM=kj(b+k)jdQdM=j(k(b+k)1)dQdM=bj(b+k)<0\frac{dP_x*}{dM} = \frac{-j}{(b + k)} < 0 \\ dQ* = \frac{kjdM}{(b + k)} - jdM \\ dQ* = dM(\frac{kj}{(b + k)} - j) \\ \frac{dQ*}{dM} = \frac{kj}{(b + k)} - j \\ \frac{dQ*}{dM} = j(\frac{k}{(b + k)} - 1) \\ \frac{dQ*}{dM} = \frac{-bj}{(b + k)} < 0

Hence, After change in income (M) the equilibrium price and quantity decrease.

If value of k is decreased to k' then the j(b+k)<j(b+k)\frac{-j}{(b + k)} < \frac{-j}{(b + k')} and bj(b+k)<bj(b+k)\frac{-bj}{(b + k)} < -\frac{bj}{(b + k')}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS