Question #163317

Given the functions: ATC= x-6+(30/x) and AR =10+(15/x), where x represents output, find TC, TR, and the output level when net revenue is zero.

1
Expert's answer
2021-02-18T15:36:25-0500

Answers\bold {Answers}

When net revenue is zero, output = 1 unit or 15 units.

When output = 1 unit, TR = TC = $25, and,

When output = 15 units, TR = TC = $165

Solutions\bold {Solutions}

We are given:


ATC=x6+30xATC = x - 6 + \dfrac {30}{x} and AR=10+15xAR = 10 + \dfrac {15}{x}


Now,

TC=x×ATCTC = x × ATC

=x(x6+30x)= x (x - 6 + \dfrac {30}{x})

=x26x+30= x^2 - 6x + 30


TR=x×ARTR = x × AR

=x(10+15x)= x (10 + \dfrac {15}{x})

=10x+15= 10x + 15


When net revenue is zero:

TRTC=0TR - TC = 0

=>x26x+30(10x+15)=0=> x^2 - 6x + 30 -( 10x + 15 )= 0

=>x216x+15=0=> x^2 -16x + 15 = 0

=>x2x15x+15=0=> x^2 - x - 15x + 15 = 0

=>x(x1)15(x1)=0=> x(x-1)-15(x-1) = 0

=>(x1)(x15)=0=> (x-1)(x-15) = 0

 x=1 or x=15\therefore \space x = 1 \space or \space x = 15


Thus, when net revenue is zero, output is either 1 unit or 15 units.


When x=1x = 1

TR=TC=(1)26(1)+30TR = TC = (1)^2 - 6(1) + 30

=16+30= 1 - 6 + 30

=$25\bold {= \$25}


When x=15x = 15

TC=TR=10(15)+15TC = TR = 10(15) + 15

=150+15= 150 + 15

=$165\bold {= \$165}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS