Having this kind of question, we can do the following;
a) Form the Lagrangian Function for the the cost minimization problem.
solution
production function, q=10l1/2k1/2
total output =1000units
price of labor, w=20
price of capital, v=5
total cost=wl+vk=20l+5k
Minimizing cost subject to the production function by setting up Lagrange:
a) min wl+vk st q
L=wl+vk+λ(q−10l1/2k1/2
b) Find the cost-minimizing bundle of labor and capital, (k*, l*).
solution
Solving Lagrange: Differentiating and equating it to zero
dL/dl=w−λ5l−1/2k1/2=0
w=λ5l−1/2k1/2...............(1)
dL/dk=v−λ5k−1/2l1/2=0
v=λ5k−1/2l1/2............(2)
dL/dλ=q−10l1/2k1/2=0
q=10l1/2k1/2............(3)
Dividing (1) and(2)
w/v=k/l
k=l(w/v)
Putting this in (3)
q=10l1/2(l(w/v))1/2=10l(w/v)1/2
l∗=[q(v/w)1/2]/10
Putting l in equation of k
k=l(w/v)=(w/v)[q(v/w)1/2]/10
k∗=[q(v/w)1/2]/10
Comments