Question #154076

Consider a firm with the following production function q = 10 l1/2 k1/2. It aims to produce 1000 units of output and faces prices for labour and capital as follows: w =20, v =5


1
Expert's answer
2021-01-11T07:48:22-0500

Having this kind of question, we can do the following;

a)      Form the Lagrangian Function for the the cost minimization problem.  

solution

production function, q=10l1/2k1/2q=10 l^{1/2} k^{1/2}

total output =1000units=1000units

price of labor, w=20w=20

price of capital, v=5v=5

total cost=wl+vk=20l+5k=wl+vk=20l+5k

Minimizing cost subject to the production function by setting up Lagrange:

a) min wl+vkwl+vk stst qq

L=wl+vk+λ(q10l1/2k1/2L=wl+vk+\lambda(q-10l^{1/2}k^{1/2}

b)      Find the cost-minimizing bundle of labor and capital, (k*, l*). 

solution

Solving Lagrange: Differentiating and equating it to zero

dL/dl=wλ5l1/2k1/2=0dL/dl=w-\lambda 5l^{-1/2}k^{1/2}=0

w=λ5l1/2k1/2...............(1)w=\lambda5l^{-1/2}k^{1/2}...............(1)

dL/dk=vλ5k1/2l1/2=0dL/dk=v-\lambda5k^{-1/2}l^{1/2}=0

v=λ5k1/2l1/2............(2)v=\lambda5k^{-1/2}l^{1/2}............(2)

dL/dλ=q10l1/2k1/2=0dL/d\lambda=q-10l^{1/2}k^{1/2}=0

q=10l1/2k1/2............(3)q=10l^{1/2}k^{1/2}............(3)

Dividing (1) and(2)

w/v=k/lw/v=k/l

k=l(w/v)k=l(w/v)

Putting this in (3)

q=10l1/2(l(w/v))1/2=10l(w/v)1/2q=10l^{1/2}(l(w/v))^{1/2}=10l(w/v)^{1/2}

l=[q(v/w)1/2]/10l^{*}=[q(v/w)^{1/2}]/10

Putting l in equation of k

k=l(w/v)=(w/v)[q(v/w)1/2]/10k=l(w/v)=(w/v)[q(v/w)^{1/2}]/10

k=[q(v/w)1/2]/10k^{*}=[q(v/w)^{1/2}]/10



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS