Answer to Question #125592 in Microeconomics for Fawad Hassan
2020-07-07T01:40:47-04:00
Graph a typical isoquant curve for the following production functions and determine whether they have convex indifference curves. Also calculate MRTS for each of the following functions
Q(x,y)=3x+y
Q(x,y)=√(x.y)
Q(x,y)=√x+ y
1
2020-07-14T09:45:46-0400
a)
Q ( x , y ) = 3 x + y Q(x,y)=3x+y Q ( x , y ) = 3 x + y
δ Q δ x = 3 \frac {\delta Q}{\delta x}=3 δ x δ Q = 3
δ Q δ y = 1 \frac {\delta Q}{\delta y}=1 δy δ Q = 1
M R T S = 3 1 = 3 MRTS=\frac {3}{1}=3 MRTS = 1 3 = 3
b)
Q ( x , y ) = x y Q(x,y)=\sqrt {xy} Q ( x , y ) = x y
δ Q δ x = y 2 x y \frac {\delta Q}{\delta x}=\frac {y}{2 \sqrt {xy}} δ x δ Q = 2 x y y
δ Q δ y = x 2 x y \frac {\delta Q}{\delta y}=\frac {x}{2 \sqrt {xy}} δy δ Q = 2 x y x
M R T S = y x MRTS=\frac {y}{x} MRTS = x y c)
Q ( x , y ) = x + y Q(x,y)=\sqrt {x+y} Q ( x , y ) = x + y
δ Q δ x = 1 2 x + y \frac {\delta Q}{\delta x}=\frac {1}{2 \sqrt{x+y}} δ x δ Q = 2 x + y 1
δ Q δ y = 1 2 x + y \frac {\delta Q}{\delta y}=\frac {1}{2 \sqrt{x+y}} δy δ Q = 2 x + y 1
M R T S = 1 MRTS=1 MRTS = 1
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment