Answer to Question #123916 in Microeconomics for eyob tilahun

Question #123916
suppose demand and total cost functions for a monopoly firm are given as follow,
demand function- p=800-3Q
Cost function- Tc=60+40Q+Q2
requered;-
1. total revenue function
2.average revenue function
3. average cost function
4.profit maximizing output
5.profit maximizing price
1
Expert's answer
2020-06-29T15:07:10-0400

1) Total revenue function.

=Price(quantity)=Price(quantity)

=(8003Q)Q=(800-3Q)Q

=800Q3Q=800Q-3Q2

2) Average revenue function

Average revenue function==

=Total revenueQuantity=\frac{\text{Total revenue}}{{Quantity}}


=800Q3Q2Q=\frac{800Q-3Q^{2}}{Q}

Average revenue function=8003Q\text{Average revenue function}=800-3Q

3) Average cost function

Average cost function=\text{Average cost function}=

Total cost functionQuantity\frac{\text{Total cost function}}{\text{Quantity}}

Average cost function=\text{Average cost function}=

60+40Q+Q2Q\frac{60+40Q+Q^2}{Q}

Average cost function\text{Average cost function} ==

60Q+40+Q\frac{60}{Q}+40+Q


4) Profit maximizing output

Profit maximizing output=\text{Profit maximizing output}=

MR=MCMR=MC

MR=∂TR∂QMR=\frac{\text{∂TR}}{\text{∂Q}}

=800Q3Q2=800Q-3Q^2

=8006Q=800-6Q

MC=TCQMC=\frac{∂TC}{∂Q}

=60+40Q+Q2=60+40Q+Q^2

=40+2Q=40+2Q

=MR=MC=MR=MC

=8006Q=40+2Q=800-6Q=40+2Q

=80040=2Q+6Q=800-40=2Q+6Q

760=8Q760=8Q

Q=95Q=95

Profit is maximized at Q=95Q=95

5) Profit maximizing price

P=8003QP=800-3Q

P=8003(95)P=800-3(95)

P=800285P=800-285

P=515P=515

Profit maximizing price is\text{Profit maximizing price is} 515515



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment