Question #123619
4.) Given the following information: utility function is U(x,y)=〖4x〗^0.5 y^0.5 , price of good X is N$5, the price of good Y is N$10 and the consumer income N$400.
What is the level of quantity demanded of good Y when the price of good X decreases to N$2.5 while the price of good Y remains at N$10? Let us assume good X is on the x-axis.
1
Expert's answer
2020-06-26T10:17:53-0400
MUxpx=MUypy\frac {MU_x}{p_x}=\frac{MU_y}{p_y}


MUx=δMδx=(yx)0.5MU_x=\frac {\delta M}{\delta x}=(\frac {y}{x})^{0.5}


MUy=δMδy=(xy)0.5MU_y=\frac {\delta M}{\delta y}=(\frac {x}{y})^{0.5}

10(yx)0.5=5(xy)0.510 (\frac{y}{x})^{0.5}=5(\frac{x}{y})^{0.5}

2y=x2y=x


xpx+ypy=400x p_x+yp_y=400

5x+10y=4005x+10y=400


20y=40020y=400


y=20,x=40y=20, x=40

If px=2.5p_x=2.5 then 4y=x


20y+10y=40020y+10y=400


y=13.7,x=53.3y=13.7, x=53.3

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS