Solution:
i)
"Q=2\\times(xy)^{0.5}"
"P_x=10, P_y=40, I=80"
"P_xQ_x+P_yQ_y=I"
"Q_x=x, Q_y=y" ii)
"10x+40y=80"
"\\frac{\\partial Q}{\\partial x}=2y^{0,5}x^{-0.5}"
"\\frac {\\partial Q}{\\partial y}=2x^{0.5}y^{-0.5}"
"\\frac {\\frac {\\partial Q}{\\partial x}}{P_x}=\\frac {\\frac{\\partial Q}{\\partial y}}{P_y}"
"\\frac {2 y^{0.5}}{10 x^{0.5}}= \\frac {2 x^{0.5}}{40 y^{0.5}}"
"x=4, y=1" iii)
"Q=2(4\\times 1)^{0.5}=4" iv)
An increase in budget for k1 will lead to a decrease in budget for k2
Comments
Leave a comment