Question #220116
A consumer has a utility function given by lnU =5linx subscrip1 +3lnx subscript 2 if the budget constraint is given by 10x subscript 1 +14x subscript 2 =124 find the optimal quantity of the two commodities
1
Expert's answer
2021-07-26T23:00:01-0400

Need to find-

optimal quantity of the two commodities

Given in the question-

lnU=5lnx1+3lnx2lnU =5lnx_1 +3lnx_2


lnU=lnx15+lnx23lnU = lnx_1^5 + lnx_2^3


lnU=ln(x1)5×(x2)3lnU = ln(x_1)^5\times(x_2)^3


U=(x1)5×(x2)3.................(1)U = (x_1)^5\times(x_2)^3.................(1)


Budget equation-

10x1+14x2=124...............(2)10x_1 + 14x_2 = 124 ...............(2)


Equilibrium condition -

MUxMUy=P1P2\frac{MU_x}{MU_y} =\frac{ P_1}{P_2}


MUx=5×(x1)4×(x2)3MU_x= 5\times(x_1)^4\times(x_2)^3


MUy=3(x1)5×(x2)2MU_y = 3(x_1)^5\times(x_2)^2


MUxMUy=(5×(x1)4×(x2)3)(3(x1)5×(x2)2)\frac{MU_x}{MU_y }= \frac{(5\times(x_1)^4\times(x_2)^3)}{(3(x_1)^5\times(x2)^2)}


MUxMUy=5x23x1\frac{MU_x}{MU_y} =\frac{ 5x_2}{3x_1}


P1p2=1014=57\frac{P_1}{p_2}= \frac{10}{14} = \frac{5}{7}


5x23x1=57\frac{5x_2}{3x_1} =\frac{ 5}{7}


7x2=3x17x_2 = 3x_1

Using this relation and putting the in equation "2"

So,

x1=7x_1 = 7

x2=3x_2 = 3

Answer -

Optimal bundle will be (7,3)

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS