Question #218751
Suppose the marginal cost curve is given by the function q^2 + 5q + 30. If the demand curve is the same as before, what will be market price and market quantity?
1
Expert's answer
2021-07-20T09:59:11-0400

Suppose the demand curve is given by P=120.5QP=120-.5Q

TR=P×Q=(1200.5Q)Q=120Q0.5Q2MR=120QTR=P\times Q\\=(120-0.5Q)Q\\=120Q-0.5Q^2\\MR=120-Q


MC=Q2+5Q+30MC=Q^2+5Q+30


MR=MC120Q=Q2+5Q+30Q2+5Q+Q+30120=0Q2+6Q90=0MR=MC\\120-Q=Q^2+5Q+30\\Q^2+5Q+Q+30-120=0\\Q^2+6Q-90=0


To find Q we use the quadratic formula

b±b24ac2a\frac{-b\pm\sqrt{b^2-4ac}}{2a}


6±62(4×90)2\frac{-6\pm\sqrt{6^2-(4\times-90)}}{2}


6±36+3602-6\pm \frac{\sqrt{36+360}}{2}


6±36+3602\frac{-6\pm\sqrt{36+360}}{2}


6±3962\frac{-6\pm\sqrt{396}}{2}


6+3962 or 63962\frac{-6+\sqrt{396}}{2}\space or\space \frac{-6-\sqrt{396}}{2}


=6.949874371 or 12.94987437=6.949874371\space or\space -12.94987437


therefore Q7Q\approx7

P=120.5(7)=116.5P=120-.5(7)=116.5



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS