Suppose the demand curve is given by P = 120 − . 5 Q P=120-.5Q P = 120 − .5 Q
T R = P × Q = ( 120 − 0.5 Q ) Q = 120 Q − 0.5 Q 2 M R = 120 − Q TR=P\times Q\\=(120-0.5Q)Q\\=120Q-0.5Q^2\\MR=120-Q TR = P × Q = ( 120 − 0.5 Q ) Q = 120 Q − 0.5 Q 2 MR = 120 − Q
M C = Q 2 + 5 Q + 30 MC=Q^2+5Q+30 MC = Q 2 + 5 Q + 30
M R = M C 120 − Q = Q 2 + 5 Q + 30 Q 2 + 5 Q + Q + 30 − 120 = 0 Q 2 + 6 Q − 90 = 0 MR=MC\\120-Q=Q^2+5Q+30\\Q^2+5Q+Q+30-120=0\\Q^2+6Q-90=0 MR = MC 120 − Q = Q 2 + 5 Q + 30 Q 2 + 5 Q + Q + 30 − 120 = 0 Q 2 + 6 Q − 90 = 0
To find Q we use the quadratic formula
− b ± b 2 − 4 a c 2 a \frac{-b\pm\sqrt{b^2-4ac}}{2a} 2 a − b ± b 2 − 4 a c
− 6 ± 6 2 − ( 4 × − 90 ) 2 \frac{-6\pm\sqrt{6^2-(4\times-90)}}{2} 2 − 6 ± 6 2 − ( 4 ×− 90 )
− 6 ± 36 + 360 2 -6\pm \frac{\sqrt{36+360}}{2} − 6 ± 2 36 + 360
− 6 ± 36 + 360 2 \frac{-6\pm\sqrt{36+360}}{2} 2 − 6 ± 36 + 360
− 6 ± 396 2 \frac{-6\pm\sqrt{396}}{2} 2 − 6 ± 396
− 6 + 396 2 o r − 6 − 396 2 \frac{-6+\sqrt{396}}{2}\space or\space \frac{-6-\sqrt{396}}{2} 2 − 6 + 396 or 2 − 6 − 396
= 6.949874371 o r − 12.94987437 =6.949874371\space or\space -12.94987437 = 6.949874371 or − 12.94987437
therefore Q ≈ 7 Q\approx7 Q ≈ 7
P = 120 − . 5 ( 7 ) = 116.5 P=120-.5(7)=116.5 P = 120 − .5 ( 7 ) = 116.5
Comments