Given the following national income model:
and
π=π +π‘π 0
π = πΆ + πΌ0 + πΊ0
πΆ = πΆ0 + π(π β π)Β
where π = ππππππ, πΆ = ππππ π’πππ‘πππ, π = π‘ππ₯ππ‘πππ;
π€hπππ πΆ0 > 0; 0 < π < 1; 0 < π‘ < 1
Using Cramerβs rule to derive an expression for the equilibrium level of income, consumption, and taxation.Β
Solution:
First re-arrange the equations so that the endogenous variables are on the LHS and the exogenous variables are on the RHS:
Y β C = I + G0
C β bY + bT = C0
T β tY0 = T
Β
Then rewrite the equations in matrix form:
The equilibrium national income (Y) = C + I0 + G0
Y = C0 + b(Y β T) + I0Β +Β G0
"=\\frac{C0 \u2212 bT + I0 + G0\n}{1 \u2212 b(1 \u2212 t)}"
Consumption:
"=\\frac{C0 \u2212 bT + b (1 \u2212 t) (I0 + G0)\n\n}{1 \u2212 b(1 \u2212 t)}"
Taxation:
"==\\frac{C0 \u2212 bT + at + t(I0 + G0))\n\n}{1 \u2212 b(1 \u2212 t)\n}"
Comments
Leave a comment