Answer to Question #187178 in Macroeconomics for Pragya Sood

Question #187178

Given the following national income model:

and


𝑇=𝑇 +π‘‘π‘Œ 0

π‘Œ = 𝐢 + 𝐼0 + 𝐺0

𝐢 = 𝐢0 + 𝑏(π‘Œ βˆ’ 𝑇) 


where π‘Œ = π‘–π‘›π‘π‘œπ‘šπ‘’, 𝐢 = π‘π‘œπ‘›π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›, 𝑇 = π‘‘π‘Žπ‘₯π‘Žπ‘‘π‘–π‘œπ‘›;

𝑀hπ‘’π‘Ÿπ‘’ 𝐢0 > 0; 0 < 𝑏 < 1; 0 < 𝑑 < 1

Using Cramer’s rule to derive an expression for the equilibrium level of income, consumption, and taxation. 


1
Expert's answer
2021-05-04T12:15:06-0400

Solution:

First re-arrange the equations so that the endogenous variables are on the LHS and the exogenous variables are on the RHS:

Y βˆ’ C = I + G0

C βˆ’ bY + bT = C0

T – tY0 = T

 

Then rewrite the equations in matrix form:


The equilibrium national income (Y) = C + I0 + G0

Y = C0 + b(Y – T) + I0 + G0


=C0βˆ’bT+I0+G01βˆ’b(1βˆ’t)=\frac{C0 βˆ’ bT + I0 + G0 }{1 βˆ’ b(1 βˆ’ t)}


Consumption:


=C0βˆ’bT+b(1βˆ’t)(I0+G0)1βˆ’b(1βˆ’t)=\frac{C0 βˆ’ bT + b (1 βˆ’ t) (I0 + G0) }{1 βˆ’ b(1 βˆ’ t)}


Taxation:


==C0βˆ’bT+at+t(I0+G0))1βˆ’b(1βˆ’t)==\frac{C0 βˆ’ bT + at + t(I0 + G0)) }{1 βˆ’ b(1 βˆ’ t) }






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment