1. Suppose we have the utility function, U = XY + X + Y.
a. Find the function for the marginal rate of substitution.
1.). a.). MRS = "\\frac{MU_{x} } {MU_{y}} = \\frac{P_{x} } {P_{y}}"
MUx = "\\frac{\\partial U} {\\partial X}" = Y + 1
MUy = "\\frac{\\partial U} {\\partial Y}" = X + 1
MRS = "\\frac{MU_{x} } {MU_{y}}" = Y + 1/ X + 1
MRS Function = Y + 1/ X + 1
1.). Budget constraint: I = PxX + PyY
18 = 2X + 4Y
Set MRS = "\\frac{P_{x} } {P_{y}}"
"Y + \\frac{1} {X} = \\frac{2} {4}"
"Y = \\frac{X} {2} -\\frac{1} {2}"
Substitute in the budget constraint to get X:
18 = 2X + 4Y
18 = 2X + 4("\\frac{X} {2} -\\frac{1} {2}")
X = 5
"Y = \\frac{X} {2} -\\frac{1} {2}"
Y = 2
The utility maximizing consumption bundle = (5, 2)
Comments
Leave a comment