1. Suppose we have the utility function, U = XY + X + Y.
a. Find the function for the marginal rate of substitution.
Solution:
1.). a.). MRS = "\\frac{MU_{x} }{MU_{y} }"
MUx = "\\frac{\\partial U} {\\partial X}" = Y + 1
MUy = "\\frac{\\partial U} {\\partial Y}" = X + 1
MRS = "\\frac{MU_{x} }{MU_{y} }" = "\\frac{Y+1}{X+1 }"
MRS Function = "\\frac{Y+1}{X+1 }"
1.). Budget constraint: I = PxX + PyY
18 = 2X + 4Y
Set MRS = Px"\\div" Py
"\\frac{Y+1}{X+1 } = \\frac{2}{4}"
Y = "\\frac{X}{2 } - \\frac{1}{2}"
Substitute in the budget constraint to get X:
18 = 2X + 4Y
18 = 2X + 4("\\frac{X}{2 } - \\frac{1}{2}" )
X = 5
Y = "\\frac{X}{2 } - \\frac{1}{2} = \\frac{5}{2 } - \\frac{1}{2} = 2.5 - 0.5 = 2"
Y = 2
The utility-maximizing consumption bundle (UX,Y) = (5, 2)
Comments
Leave a comment