Answer to Question #251849 in Economics of Enterprise for Gift nkusang'ombe

Question #251849
Given production function=(k+2)(l+1),cost of capital=$4,wage=$6.money available to the firm =8130, how to find q*?
1
Expert's answer
2021-10-15T11:23:06-0400

Production function : q=(k+2)(l+1)q=(k+2)(l+1)

q=kl+k+2l+2q=kl+k+2l+2

Cost function: wage×\times labor+cost of capital×\times capital=Money available

C:6l+4k=8130C:6l+4k=8130

The firm would like to maximize the production that is the value of q with respect to its cost function:

We will use the lagrangian function:

Max q subject to C

L=kl+k+2l+2λ(6l+4k8130)L=kl+k+2l+2-λ(6l+4k-8130)

Differentiating L wrt k, l, and λ

dLdl=k+26λ=0k+2=6λ....(1)dLdk=l+14λ=0l+1=4λ....(2)dLdλ=6l+4k8130=06l+4k=8130....(3)\frac{dL}{dl}=k+2-6λ=0\\ k+2=6λ....(1)\\ \frac{dL}{dk}=l+1-4λ=0\\ l+1=4λ....(2)\\ \frac{dL}{dλ}=6l+4k-8130=0\\ 6l+4k=8130....(3)\\

 

From(1)and(2)(k+2)(l+1)=322(k+2)3=l+12k3+431=l2k3+13=lPutting this in (3)6l+4k=81306(2k3+13)+4k=81304k+2+4k=81308k=8128k=1016From (1) and (2)\\ \frac{(k+2)}{(l+1)}=\frac{3}{2}\\ \frac{2(k+2)}{3}=l+1\\ \frac{2k}{3}+\frac{4}{3}-1=l\\ \frac{2k}{3}+\frac{1}{3}=l\\ Putting\space this\space in \space (3)\\ 6l+4k=8130\\ 6(\frac{2k}{3}+\frac{1}{3})+4k=8130\\ 4k+2+4k=8130\\ 8k=8128\\ k=1016

Putting the value of k in the relation to get l

2k3+13=l2k+1=3l2(1016)+1=3ll=677.67\frac{2k}{3}+\frac{1}{3}=l\\ 2k+1=3l\\ 2(1016)+1=3l\\ l=677.67

To get the value of q, we will put the obtained optimal value of k and l in the production function:

q=(k+2)(l+1)q=(1016+2)(677.67+1)q=1018×678.67q=690,886.06q=(k+2)(l+1) q=(1016+2)(677.67+1)\\ q=1018\times 678.67\\ q=690,886.06


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment