A random sample Y1 , Y 2 , ⋯,Yn  is drawn from a distribution whose probability density function is given by: f (Y ) = βe− βY ,  Y  0  &  β > 0 Â
a). Obtain the maximum likelihood estimator (MLE) of β. (3 points)
b). Given that  ∑ n Y i = 25  , ∑n Yi2 = 50  ,  n = 50 calculate the maximum likelihoodÂ
estimate of β.
 c). Using the same data as in part (b), test the null hypothesis that β =1against the alternative hypothesis that β ≠1at 5% level of significance
a
"fY(y) = c(\u03b2)y3(1 \u2212 y)\u03b21{0<y<1},"
b
25+50+50=125
c
maximum-likelihood estimator of θ
Comments
Leave a comment