Answer to Question #197663 in Economics of Enterprise for MUZEMIL JOBRE

Question #197663

A random sample Y1 , Y 2 , ⋯,Yn  is drawn from a distribution whose probability density function is given by: f (Y ) = βe− βY ,  Y  0  &  β > 0  

a). Obtain the maximum likelihood estimator (MLE) of β. (3 points)

b). Given that  ∑ n Y i = 25  , ∑n Yi2 = 50  ,  n = 50 calculate the maximum likelihood 

estimate of β.

 c). Using the same data as in part (b), test the null hypothesis that β =1against the alternative hypothesis that β ≠1at 5% level of significance



1
Expert's answer
2021-05-27T12:01:19-0400

a

"fY(y) = c(\u03b2)y3(1 \u2212 y)\u03b21{0<y<1},"

b

25+50+50=125

c

maximum-likelihood estimator of θ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS