Let X1 , X2 , ⋯, XN be a random sample of size n from normal distribution with mean µ and variance σ2 .
a). Find the maximum likelihood estimator of σ2 2 . (2 points)
b). Find the asymptotic distribution of the maximum likelihood estimator of σ2 2
obtained in part (a). (3 points)
(a)"variance \\space v=v(\\Sigma \\frac{xi}{n})=\\frac{1}{n^{2}}\\Sigma v(xi)=\\frac{n}{n^{2}}\u03c3^{2}=\\frac{\u03c3^{2}}{n}"
therefore the likelihood estimator will be
"\u03c3^{2}=s^{2} \\frac{n}{n-1}=\\frac{\\Sigma (xi-x)^{2}}{n-1}"
s2=constant estimator
(b)The sample median estimator of the median Xn corresponding to p = 0.5, Xn is a then a normal distribution with parameters µ and σ2.
Comments
Best
Leave a comment