Question #188398

Given the demand function. P=16𝑒−0.02𝑄

• Determine the quantity and price at which total revenue will be maximized.

• test the second-order condition.


1
Expert's answer
2021-05-05T13:37:16-0400

1.

P=16e0.02QP=16e^{-0.02Q}


Total revenue=TR=PQ=16e0.02Q.Q=TR=PQ=16e^{-0.02Q}.Q


δTRδQ=16e0.02Q+16Q(0.02)e0.02Q=0\frac{\delta TR}{\delta Q}=16e^{-0.02Q} +16Q(-0.02)e^{-0.02Q}=0


16e0.02Q[10.02Q]=016e^{-0.02Q}[1-0.02Q]=0

[e0.02Q[e^{-0.02Q } is always positive]


so, 10.02Q=01-0.02Q=0


Q=10.02=50Q=\frac{1}{0.02}=50


P=16e0.02(50)P=16e^{-0.02(50)}


p=16e=162.72=5.88p=\frac{16}{e}=\frac{16}{2.72}=5.88



(b)

δ2TRδQ2=16e0.02Q(0.02)+(0.032)e0.02Q\frac{\delta ^2TR}{\delta Q^2}=16e^{-0.02Q}(-0.02)+(-0.032)e^{-0.02Q}


=0.32Qe0.02(0.02)=-0.32Qe^{-0.02}(0.02)


<0


=negative


second order is also satisfied.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS