Given the demand function. P=16๐โ0.02๐
โข Determine the quantity and price at which total revenue will be maximized.
โข test the second-order condition.
1.
"P=16e^{-0.02Q}"
Total revenue"=TR=PQ=16e^{-0.02Q}.Q"
"\\frac{\\delta TR}{\\delta Q}=16e^{-0.02Q} +16Q(-0.02)e^{-0.02Q}=0"
"16e^{-0.02Q}[1-0.02Q]=0"
"[e^{-0.02Q }" is always positive]
so, "1-0.02Q=0"
"Q=\\frac{1}{0.02}=50"
"P=16e^{-0.02(50)}"
"p=\\frac{16}{e}=\\frac{16}{2.72}=5.88"
(b)
"\\frac{\\delta ^2TR}{\\delta Q^2}=16e^{-0.02Q}(-0.02)+(-0.032)e^{-0.02Q}"
"=-0.32Qe^{-0.02}(0.02)"
<0
=negative
second order is also satisfied.
Comments
Leave a comment