Question #188397

Differentiate the following logarithmic functions and show that 𝑦=𝑙𝑛(𝑥+5)2≠[ln⁡(𝑥+5)]2


1
Expert's answer
2021-05-04T11:17:26-0400

(i)

y=ln(x+5)2y=ln(x+5)^2


dydn=ddnln(x+5)2\frac{dy}{dn}=\frac{d}{dn}ln(x+5)^2


Rule[lnab=blna]Rule[lna^b=blna]


dydn=ddn2ln(x+5)\frac{dy}{dn}=\frac{d}{dn}2ln(x+5)


=2ddnln(x+5)=2\frac{d}{dn}ln(x+5)


Rule:[ddninx=1n]Rule:[\frac{d}{dn}inx=\frac{1}{n}]


dydn=2(1x+5).ddn(x+5)\frac{dy}{dn}=2(\frac{1}{x+5}).\frac{d}{dn}(x+5)


=2n+5=\frac{2}{n+5}


dydn=2n+5...........................................(i)\frac{dy}{dn}=\frac{2}{n+5}...........................................(i)


(ii)

y=[ln(x+5)]2y=[ln(x+5)]^2


dydn=ddn[ln(n+5)]2\frac{dy}{dn}=\frac{d}{dn}[ln(n+5)]^2


=2ln(n+5).ddnln(x+5)=2ln(n+5).\frac{d}{dn}ln(x+5)


=2ln(x+5).1n+5(x+5)=2ln(x+5).\frac{1}{n+5}(x+5)


dydn=2x+5ln(x+5).....................................(ii)\frac{dy}{dn}=\frac{2}{x+5}ln(x+5).....................................(ii)


The derivatives of the two functions are different so the two functions are not same


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS