Differentiate the following logarithmic functions and show that 𝑦=𝑙𝑛(𝑥+5)2≠[ln(𝑥+5)]2
(i)
"y=ln(x+5)^2"
"\\frac{dy}{dn}=\\frac{d}{dn}ln(x+5)^2"
"Rule[lna^b=blna]"
"\\frac{dy}{dn}=\\frac{d}{dn}2ln(x+5)"
"=2\\frac{d}{dn}ln(x+5)"
"Rule:[\\frac{d}{dn}inx=\\frac{1}{n}]"
"\\frac{dy}{dn}=2(\\frac{1}{x+5}).\\frac{d}{dn}(x+5)"
"=\\frac{2}{n+5}"
"\\frac{dy}{dn}=\\frac{2}{n+5}...........................................(i)"
(ii)
"y=[ln(x+5)]^2"
"\\frac{dy}{dn}=\\frac{d}{dn}[ln(n+5)]^2"
"=2ln(n+5).\\frac{d}{dn}ln(x+5)"
"=2ln(x+5).\\frac{1}{n+5}(x+5)"
"\\frac{dy}{dn}=\\frac{2}{x+5}ln(x+5).....................................(ii)"
The derivatives of the two functions are different so the two functions are not same
Comments
Leave a comment