Solution:
If w(Pb-207) = w(Pb-208) = x (equal amounts),
then:
w(Pb-206) = 1 - w(Pb-207) - w(Pb-208) = 1 - x - x = 1-2x.
Write the following equation:
[w(Pb-206) × Isotopic mass of Pb-206] + [w(Pb-207) × Isotopic mass of Pb-207] + [w(Pb-208) × Isotopic mass of Pb-208] = Average atomic mass of Pb
Set up average atomic weight equation:
(1-2x)(205.98) + (x)(206.98) + (x)(207.98) = 207.19
205.98 - 411.96x + 206.98x + 207.98x = 207.19
3x = 1.21
x = 0.4033
w(Pb-207) = w(Pb-208) = x = 0.4033 or 40.33%
w(Pb-206) = 1-2x = 1 - 2×0.4033 = 0.1934 or 19.34%
Answer:
The percent abundances are as follows:
Pb-206: 19.34%
Pb-207: 40.33%
Pb-208: 40.33%
Comments
Leave a comment