From the following molar conductivities at infinite dilutions
^°m for Ba(OH)2 = 457.6 ohm-1cm2mol-1
^°m for Bacl2= 240.6 ohm-1cm2mol-1
^°m for NH4cl = 129.8 ohm-1cm2mol-1
Calculate the ^°m of NH4cl
"\\lambda"°m of Ba(OH)2 is 457.6 ohm-1*cm2*mol-1;
"\\lambda"°m of BaCl2 is 240.6 ohm-1*cm2*mol-1;
"\\lambda"°m of NH4Cl is 129.8 ohm-1*cm2*mol-1;
The "\\lambda"°m of NH4Cl is 129.8 cm2*ohm-1*mol-1;
Probably should calculated the "\\lambda"°m of NH4OH.
Then, NH4OH = NH4+ + OH-;
So, "\\lambda"°m(NH4OH) = "\\lambda"°m(NH4+) + "\\lambda"°m(OH-);
Or "\\lambda"°m(NH4OH) = "\\lambda"°m(NH4Cl) - (1/2 * "\\lambda"°m(BaCl2)) + (1/2 * "\\lambda"°m(Ba(OH)2)) = (("\\lambda"°m(NH4+) + "\\lambda"°m(Cl-)) - (1/2 * ( "\\lambda"°m(Ba2+) + 2 * "\\lambda"°m(Cl-))) + (1/2 * ( "\\lambda"°m(Ba2+) + 2 * "\\lambda"°m(OH-))) = "\\lambda"°m(NH4+) + "\\lambda"°m(Cl-) - 1/2 * "\\lambda"°m(Ba2+) - "\\lambda"°m(Cl-) + 1/2 * "\\lambda"°m(Ba2+) + "\\lambda"°m(OH-) = "\\lambda"°m(NH4+) + "\\lambda"°m(OH-).
So:
"\\lambda"°m(NH4OH) = "\\lambda"°m(NH4Cl) - (1/2 * "\\lambda"°m(BaCl2)) + (1/2 * "\\lambda"°m(Ba(OH)2) = 129.8 - (1/2 * 240.6) + (1/2 * 457.6) = 129.8 - 120.3 + 228.8 = 238.3 cm2*ohm-1*mol-1.
Answer: 238.3 cm2*ohm-1*mol-1.
Comments
Leave a comment