Answer to Question #134468 in Physical Chemistry for Jenny

Question #134468
A mixture of 40.0g of O2 gas and 55.0g of CO2 gas in a rigid, closed container at 300K. The total pressure in the container is 3.15 atm. Calculate the partial pressure of each gas in the mixture in ppm and SI Units.
1
Expert's answer
2020-09-23T04:39:28-0400

Solution.

p=R×TV(n(O2)+n(CO2))p = \frac{R \times T}{V}(n(O2) + n(CO2))

p(O2)=4032×8.31×300Vp(O2) = \frac{\frac{40}{32} \times 8.31 \times 300}{V}

p(CO2)=5544×8.31×300Vp(CO2) = \frac{\frac{55}{44} \times 8.31 \times 300}{V}

3.15×101325=6232.5V3.15 \times 101325 = \frac{6232.5}{V}

V = 0.0195 m3

p(O2)=1.25×8.31×3000.0195=159586.88 Pap(O2) = \frac{1.25 \times 8.31 \times 300}{0.0195} = 159586.88 \ Pa

p(CO2)=1.25×8.31×3000.0195=159586.88 Pap(CO2) = \frac{1.25 \times 8.31 \times 300}{0.0195} = 159586.88 \ Pa

w(O2)=w(CO2)=50%w(O2) = w(CO2) = 50 \%

p(O2)=p(CO2)=500000 ppmp(O2) = p(CO2) = 500000 \ ppm

Answer:

p(O2) = 159586.88 Pa = 500000 ppm

p(CO2) = 159586.88 Pa = 500000 ppm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment