Question #115487
How are spherical polar coordinates related to the rectangular cartesian coordinates? Illustrate
giving suitable relations. Also write the Schrodinger equation for hydrogen atom in spherical polar coordinates
1
Expert's answer
2020-05-13T14:21:27-0400

Answer:

The spherical polar coordinates rr, θ\theta and ϕ\phi are related to Cartesian coordinates xx, yy and zz via the following equations:

x=r sinθ cosϕx = r\text{ sin} \theta\text{ cos} \phi

y=r sinθ sinϕy = r\text{ sin} \theta\text{ sin}\phi

z=r cosθz = r \text{ cos}\theta .

And vice versa:

r=x2+y2+z2r = \sqrt{x^2+y^2+z^2}

ϕ=arctanyx\phi = \text{arctan} \frac{y}{x}

θ=arctanx2+y2z\theta =\text{arctan}\frac{\sqrt{x^2+y^2}}{z} .

The time-independent Schrödinger equation in spherical polar coordinates for hydrogen atom is:

{22μr2[r(r2r)+1sinθθ(sinθθ)+1sin2θ2ϕ2]e24πϵ0r}ψ(r,θ,ϕ)=Eψ(r,θ,ϕ)\{-\frac{\hbar^2}{2\mu r^2}[\frac{∂}{∂r}(r^2\frac{∂}{∂r}) + \frac{1}{\text{sin}\theta}\frac{∂}{∂\theta}(\text{sin}\theta\frac{∂}{∂\theta}) + \frac{1}{\text{sin}^2\theta}\frac{∂^2}{∂\phi^2}] - \frac{e^2}{4\pi\epsilon_0r}\}\psi(r,\theta,\phi) = E\psi(r,\theta,\phi)

Solving this equation involves the separation of the variables:

Ψ(r,θ,ϕ)=R(r)P(θ)F(ϕ)\Psi(r,\theta,\phi) = R(r)P(\theta)F(\phi) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS