Answer:
The spherical polar coordinates "r", "\\theta" and "\\phi" are related to Cartesian coordinates "x", "y" and "z" via the following equations:
"x = r\\text{ sin} \\theta\\text{ cos} \\phi"
"y = r\\text{ sin} \\theta\\text{ sin}\\phi"
"z = r \\text{ cos}\\theta" .
And vice versa:
"r = \\sqrt{x^2+y^2+z^2}"
"\\phi = \\text{arctan} \\frac{y}{x}"
"\\theta =\\text{arctan}\\frac{\\sqrt{x^2+y^2}}{z}" .
The time-independent Schrödinger equation in spherical polar coordinates for hydrogen atom is:
"\\{-\\frac{\\hbar^2}{2\\mu r^2}[\\frac{\u2202}{\u2202r}(r^2\\frac{\u2202}{\u2202r}) + \\frac{1}{\\text{sin}\\theta}\\frac{\u2202}{\u2202\\theta}(\\text{sin}\\theta\\frac{\u2202}{\u2202\\theta}) + \\frac{1}{\\text{sin}^2\\theta}\\frac{\u2202^2}{\u2202\\phi^2}] - \\frac{e^2}{4\\pi\\epsilon_0r}\\}\\psi(r,\\theta,\\phi) = E\\psi(r,\\theta,\\phi)"
Solving this equation involves the separation of the variables:
"\\Psi(r,\\theta,\\phi) = R(r)P(\\theta)F(\\phi)" .
Comments
Leave a comment