"\\phi=\\sum\\ x_i ln\\ \\hat{\\phi_i}" (As per standard notations).
Here "\\phi" is a molar property with "ln\\ \\hat{\\phi_i}" be the property of a component in solution.
By using Gibbs-Duhem equation,
At constant "p,"
"x_1\\ (d\\ ln\\hat{\\phi_1})+x_2\\ (d\\ ln\\hat{\\phi_2})=0"
And,"\\hat{f_i} =x_i \\hat{\\phi_i}{p}\\implies \\hat{\\phi_i}=\\frac{\\hat{f_i}}{x_i \\ p}"
"\\implies x_1\\ (d\\ ln\\frac{\\hat{f_1}}{p\\ x_1})+x_2\\ (d\\ ln\\frac{\\hat{f_2}}{p \\ x_2})=0"
"\\implies x_1\\ ( d(\\ ln{\\hat{f_1}})-d(ln{\\ x_1 p}))" "+x_2(\\ (d\\ ln{\\hat{f_2}})-d(ln \\ { x_2p\\ }))=0"
As pressure is constant,"d(ln \\ { x_1p\\ })=d(ln \\ { x_2p\\ })=0"
The equation reduces to "x_1(d\\ ln{\\hat{f_1}})+x_2(d\\ ln{\\hat{f_2}})=0"
By using Lewis-Randall Rule,"\\hat{f_1}=x_1f_1" ,
We get, "x_1\\times d\\ ln{(\\ x_1{f_1)}}+x_2\\times d\\ ln{{\\ (x_2 f_2)}}=0"
Comments
Leave a comment