Question #106017
proof that (x1 × d ln f1/d x1) + (x2 × d ln f2/d x1)=0 in chemical engineering thermodynamics
1
Expert's answer
2020-03-25T12:46:55-0400

ϕ= xiln ϕi^\phi=\sum\ x_i ln\ \hat{\phi_i} (As per standard notations).

Here ϕ\phi is a molar property with ln ϕi^ln\ \hat{\phi_i} be the property of a component in solution.

By using Gibbs-Duhem equation,

At constant p,p,

x1 (d lnϕ1^)+x2 (d lnϕ2^)=0x_1\ (d\ ln\hat{\phi_1})+x_2\ (d\ ln\hat{\phi_2})=0

And,fi^=xiϕi^p    ϕi^=fi^xi p\hat{f_i} =x_i \hat{\phi_i}{p}\implies \hat{\phi_i}=\frac{\hat{f_i}}{x_i \ p}

    x1 (d lnf1^p x1)+x2 (d lnf2^p x2)=0\implies x_1\ (d\ ln\frac{\hat{f_1}}{p\ x_1})+x_2\ (d\ ln\frac{\hat{f_2}}{p \ x_2})=0

    x1 (d( lnf1^)d(ln x1p))\implies x_1\ ( d(\ ln{\hat{f_1}})-d(ln{\ x_1 p})) +x2( (d lnf2^)d(ln x2p ))=0+x_2(\ (d\ ln{\hat{f_2}})-d(ln \ { x_2p\ }))=0

As pressure is constant,d(ln x1p )=d(ln x2p )=0d(ln \ { x_1p\ })=d(ln \ { x_2p\ })=0

The equation reduces to x1(d lnf1^)+x2(d lnf2^)=0x_1(d\ ln{\hat{f_1}})+x_2(d\ ln{\hat{f_2}})=0

By using Lewis-Randall Rule,f1^=x1f1\hat{f_1}=x_1f_1 ,

We get, x1×d ln( x1f1)+x2×d ln (x2f2)=0x_1\times d\ ln{(\ x_1{f_1)}}+x_2\times d\ ln{{\ (x_2 f_2)}}=0







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS