derive the expression for the total energy of an electron in the nth orbit
Knetic energy of electron in nth orbit can be given as -
"KE=\\frac{1}{2} mv_n2...........(1)"
Also, we know that,
"vn=\\frac{e^2}{2nh}\u03b5\u00b0"
∴ By putting the value of Vn in equation (i), we get -
"KE = \\frac{1}{2}m(\\frac{ e^2}{2nh})^2\u03b5\u03bf"
"K.E = \\frac{me^4}{8n^2h^2} (\u03b5\u03bf)^2"
In the same way,
Potential energy "(P.E.) = \u221214\u03c0\u03b5^\u2218e \u00d7 2rn"
We know,
"rn = \u03b5^\u2218n^2h^2\u03c0me^2"
Now, Potential energy =
"PE = -\\frac{e^2}{4}\u03b5^\u2218\u03c0me^2\u03b5^\u2218n^2h^2.........(2)"
Hence, "PE = \u2212\\frac{me^4}{4}\u03b5^\u22182n^2h^2"
Now, Total Energy(En) = Kinetic Energy + Potential Energy
"En = \\frac{me^4}{8}\u03b5^\u22182n^2h^2\u2013\\frac{me^4}{4}\u03b5^\u22182n^2h^2"
"\u2234 En =\\frac{me^4}{8}\u03b5^\u22182n^2h^2"
Putting the values of m, e, and h in above equation we get,
"m= 9.1 \u00d710^{-31}"
"e = 1.6 \u00d7 10^{-19}"
"\u03b5^o = 8.85 \u00d710^{-12}"
"h = 6.62 \u00d7 10^{-34}"
we get,
∴ Total Energy of nth orbit = – 13.6/n2 eV
Comments
Leave a comment