These transitions involve moving an electron from a nonbonding electron pair to a antibonding \*pi^*\) orbital. They tend to have molar absorbtivities less than 2000 and undergo a blue shift with solvent interactions (a shift to higher energy and shorter wavelengths). This is because the lone pair interacts with the solvent, especially a polar one, such that the solvent aligns itself with the ground state. When the excited state emerges, the solvent molecules do not have time to rearrange in order to stabilize the excited state. This causes a lowering of energy of the ground state and not the excited state. Because of this, the energy of the transition increases, hence the "blue shift".
Source:https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Electronic_Spectroscopy%3A_Interpretation
Comments
Leave a comment