Determine the boiling point and freezing point of the following solutions:
5.00g caffeine (C8H10N4O2) and 250.0 ml water.
0.300 kg chloroform (CHCl3) and in 21.0 g eucalyptol (C10H18O).
"\\Delta" Tfr = Kfr * m(molality);
"\\Delta" Tb = Eb * m(molality);
For water: Kfr(H2O) = 1.86 K * kg/mol;
Eb(H2O) = 0.52 K * kg/mol;
Tfr(H2O) = 0.0 C = 273.0 K;
Tb(H2O) = 100.0 C = 373.0 K;
m(caffeine) = 5.0 g;
M(caffeine) = 194 g/mol;
n(caffeine) = m(caffeine)/M(caffeine) = 5/194 = 0.0258 moles;
V(H2O) = 250.0 mL;
m(H2O) = 250.0 g = 0.25 kg;
m(molality of caffeine) = n(caffeine)/m(H2O) = 0.0258/0.25 = 0.1031 mol/kg
"\\Delta" Tfr(caffeine, water) = Kfr(H2O) * m(molality of caffeine) = 1.86 * 0.1031 = 0.1918 K;
Tfr(caffeine, water) = Tfr(H2O) - "\\Delta" Tfr(caffeine, water) = 273 - 0.1918 = 272.8 K = -0.2 C;
"\\Delta" Tb(caffeine, water) = Eb(H2O) * m(molality of caffeine) = 0.52 * 0.1031 = 0.0536 K;
Tb(caffeine, water) = Tb(H2O) - "\\Delta" Tb(caffeine, water) = 373 - 0.0536 = 372.95 K = 99.95 C.
For chloroform: Kfr(CHCl3) = 4.7 K * kg/mol;
Eb(CHCl3) = 3.6 K * kg/mol;
Tfr(CHCl3) = -63.4 C = 209.6 K;
Tb(CHCl3) = 62.0 C = 335.0 K;
m(eucalyptol) = 21.0 g;
M(eucalyptol) = 154 g/mol;
n(eucalyptol) = m(eucalyptol)/M(eucalyptol) = 21/154 = 0.1364 moles;
m(CHCl3) = 0.300 kg;
m(molality of eucalyptol) = n(eucalyptol)/m(CHCl3) = 0.1364/0.300 = 0.4545 mol/kg;
"\\Delta" Tfr(eucalyptol, chloroform) = Kfr(CHCl3) * m(molality of eucalyptol) = 4.7 * 0.4545 = 2.1364 K;
Tfr(eucalyptol, chloroform) = Tfr(CHCl3) - "\\Delta" Tfr(eucalyptol, chloroform) = 209.6 - 2.1364 = 207.5 K = -65.5 C;
"\\Delta" Tb(eucalyptol, chloroform) = Eb(CHCl3) * m(molality of eucalyptol) = 3.6 * 0.4545 = 1.6362 K;
Tb(eucalyptol, chloroform) = Tb(CHCl3) - "\\Delta" Tb(eucalyptol, chloroform) = 335.0 - 1.6362 = 333.4 K = 60.4 C.
Comments
Leave a comment