Question #95757
A cylinder contains 91.9 g of neon (Ne) gas. Another cylinder (twice the volume of the neon cylinder and at the same temperature/pressure), contains hydrogen (H2) gas.

Assuming both are ideal gases, what is the mass of the hydrogen gas (in g)?
1
Expert's answer
2019-10-03T05:19:07-0400

Let's use indeal gas law for the first cylinder


pV=mNeMNeRTpV = \frac{{{m_{{\text{Ne}}}}}}{{{M_{{\text{Ne}}}}}}RT


where mNe{{m_{{\text{Ne}}}}} - mass of Ne, MNe{{M_{{\text{Ne}}}}} - molar mass of Ne. We know, that pressure and temperature are the same in the second cylinder and V2=2V{V_2} = 2V , so ideal gas law for the second cylinder will be


2pV=mH2MH2RT2pV = \frac{{{m_{{{\text{H}}_2}}}}}{{{M_{{{\text{H}}_2}}}}}RT

Thus we can multiply the first equation by 2 and equalize the right sides


mH2MH2RT=2mNeMNeRT\frac{{{m_{{{\text{H}}_2}}}}}{{{M_{{{\text{H}}_2}}}}}RT = 2\frac{{{m_{{\text{Ne}}}}}}{{{M_{{\text{Ne}}}}}}RT

and express mass of the hydrogen


mH2=2MH2MNemNe{m_{{{\text{H}}_2}}} = 2\frac{{{M_{{{\text{H}}_2}}}}}{{{M_{{\text{Ne}}}}}}{m_{{\text{Ne}}}}

Now let's do the calculations (atomic weights can be found in the periodic table so MNe20.18[gmol]{M_{{\text{Ne}}}} \approx 20.18[\frac{{\text{g}}}{{{\text{mol}}}}] and MH2=2MH21.008[gmol]=2.016[gmol]{M_{{{\text{H}}_2}}} = 2 \cdot {M_{\text{H}}} \approx 2 \cdot 1.008[\frac{{\text{g}}}{{{\text{mol}}}}] = 2.016[\frac{{\text{g}}}{{{\text{mol}}}}] )


mH2=22.016[gmol]20.18[gmol]91.9[g]18.36[g]{m_{{{\text{H}}_2}}} = 2\frac{{2.016[\frac{{\text{g}}}{{{\text{mol}}}}]}}{{20.18[\frac{{\text{g}}}{{{\text{mol}}}}]}} \cdot 91.9[{\text{g}}] \approx 18.36[{\text{g}}]






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS