Calculate the △G° at 298 K for the following reaction. Show your work.
Fe2O3 (s) + 13CO (g) = 2Fe(CO)5(g) + 3CO2(g)
-824.2 -110.5 -733.8 -393.5
△H° (kJ/mol)
87.4 197.6 445.2 213.6
△S° (J/mol x K)
Solution:
Balanced chemical equation:
Fe2O3(s) + 13CO(g) → 2Fe(CO)5(g) + 3CO2(g)
The standard enthalpy of reaction is then given by:
ΔH∘rxn = ∑νΔH∘f(products) − ∑νΔH∘f(reactants)
Therefore,
ΔH∘rxn = [3×ΔH∘f(CO2, g) + 2×ΔH∘f(Fe(CO)5, g)] − [13×ΔH∘f(CO, g) + ΔH∘f(Fe2O3, s)]
ΔH∘rxn = [3×(−393.5) + 2×(−733.8)] − [13×(−110.5) + (−824.2)] = −387.4
ΔH∘rxn = −387.4 kJ mol−1
The standard entropy of reaction is then given by:
ΔS∘rxn = ∑νS∘f(products) − ∑νS∘f(reactants)
Therefore,
ΔS∘rxn = [3×S∘f(CO2, g) + 2×S∘f(Fe(CO)5, g)] − [13×S∘f(CO, g) + S∘f(Fe2O3, s)]
ΔS∘rxn = [3×213.6 + 2×445.2] − [13×197.6 + 87.4] = −1125
ΔS∘rxn = −1125 J mol−1 K−1
ΔG = ΔH − TΔS
Therefore,
ΔG∘rxn = (−387400 J mol−1) − (298 K) × ( −1125 J mol−1 K−1) = −52150 J mol−1 = −52.15 kJ mol−1
ΔG∘rxn = −52.15 kJ mol−1
Answer: ΔG∘rxn = −52.15 kJ mol−1
Comments
Leave a comment