1. The mass of 1 L of solution is calculated from its density.
"(1 \\;L \\;solution \\times \\frac{10^3 \\;ml}{1\\;L}) \\times \\frac{1.83 \\;g \\; solution}{mL \\;solution} = 1830 \\; g \\; solution"
Then the mass of solute (H2SO4) present in 1 L of solution is determined from percent by mass:
"(\\frac{1830 \\;g \\;solution}{L \\; solution}) (\\frac{98.0 \\; g H_2SO_4}{100 \\;g \\; solution}) = \\frac{1793 \\;g \\;H_2SO_4}{L\\; solution}"
The molar mass of H2SO4 is 98.08 g/mol.
Now we divide mass of solute (H2SO4) present in 1 L of solution by molar mass and obtain molarity.
"\\frac{1793 \\;g \\; H_2SO_4}{L \\;solution} \\times \\frac{1 \\;mol \\;H_2SO_4}{98.08 \\;g \\;H_2SO_4} = \\frac{18.3\\; mol \\;H_2SO_4}{L \\; solution} = 18.3 \\;M"
So, molarity of the solution is 18.3 M.
The mass of 1 L of solution is 1830 g and mass of solute (H2SO4) present in 1 L of solution is 1793 g. Then mass of solvent (water) in the solution is the difference between the mass of solution and mass of solute (H2SO4).
"(1830 \\;g\\; solution -1793 \\;g \\;H_2SO_4) = 37.0 \\;g\\;H_2O \\times \\frac{1 \\;kg}{10^3 \\;g} \\\\\n\n= 0.0370 \\;kg \\;H_2O"
Molality of a solution is defined as the number of moles of solute dissolved in 1 kg of solvent.
"Molality \\;(m) = \\frac{moles \\;of \\;H_2SO_4}{mass \\; of \\;water \\;(in \\;kg)} \\\\\n\n= \\frac{18.3 \\;mol \\;H_2SO_4}{0.0370 \\;kg\\;H_2O} \\\\\n\n= 495 \\; m"
So, the molality of the solution is 495 m.
2. M(glucose) = 180 g/mol
n(glucose) "= \\frac{2.93}{180} = 0.01627 \\;mol"
Proportion:
1.35 mol – 1000 mL
0.01627 mol – x
"x=\\frac{0.01627 \\times 1000}{1.35} = 12.0 \\;mL"
Answer: 12.0 mL
Comments
Leave a comment