Question #225926

How can I calculate the quantity of oxygen in freshwater in a 50L bucket at an altitude of 5000m above sea level


1
Expert's answer
2021-08-24T02:20:27-0400

Henry's law:




x = pHx=Hp\dfrac{p}{H}x= H p

where xx is the mole fraction of the oxigen in the water, pp is the partial oxygen preassure in air (in atm) and H = 3.64\times 10^{4}H=3.64×10

4

is Henry's constant for oxygen at 15°c.


1. The partial oxygen preassure in air at sea level is:

p0=1 atm×0.21=0.21 atmp0p_0 = 1\space atm\times 0.21 = 0.21\space atmp 0

=1 atm×0.21=0.21 atm

where 0.210.21 represents the fraction of oxygen in air.


Thus:


x0=0.213.64×1045.8×106x0x_0 = \dfrac{0.21}{3.64\times 10^{4}} \approx 5.8\times 10^{-6}x 0

= 3.64×1040.215.8×1063.64×10 4 0.21 ​ ≈5.8×10 ^ {−6}


One liter of water contains 55.56 moles of water. Thus, 10 liters will contain 555.6 moles. Thus, the quantity of oxygen will be.


n0=x0×555.6 moles=5.8×106×555.6 moles3.22×103 molesn0n_0 = x_0\times 555.6 \space moles = 5.8\times 10^{-6}\times 555.6\space moles \approx 3.22\times 10^{-3}\space molesn _0

=x0×555.6moles=5.8×106×555.6moles3.22×103moles=x _ 0 ​ ×555.6 moles=5.8×10 −6 ×555.6 moles≈3.22×10 −3 moles

The partial oxygen preassure in air at 5000 m.a.s is:



p0=0.53 atm×0.21=0.11 atmp_0 = 0.53\space atm\times 0.21 = 0.11\space atm

where 0.210.21 represents the fraction of oxygen in air.

Thus:



x0=0.113.64×1043.02×106x_0 = \dfrac{0.11}{3.64\times 10^{4}} \approx 3.02\times 10^{-6}

One liter of water contains 55.56 moles of water. Thus, 10 liters will contain 555.6 moles. Thus, the quantity of oxygen will be:



n0=x0×555.6 moles=3.02×106×555.6 moles1.68×103 molesn_0 = x_0\times 555.6 \space moles = 3.02\times 10^{-6}\times 555.6\space moles \approx 1.68\times 10^{-3}\space moles

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS