Q150586
The volume of 0.0125 mol/L sodium thiosulfate used for titration is 98.7 ml. What is the amount of dissolved O2 (mg/L) in the sample?
Solution:
Winkler method is used to determine the dissolved oxygen in aqueous solution. The steps
involved in the Winkler method are as follows:
1) Mn2+(aq) + 2OH- (aq) ----> Mn(OH)2 (s)
2) 4Mn(OH)2 (s) + 1 O2 (aq) + 2H2O(l) ---> 4 Mn(OH)3 (s)
3) 2 Mn(OH)3 (s) + 3H2SO4 (aq) ---> 2 Mn3+ (aq) + 3 SO42- (aq) + 6 H2O(l)
4) 2 Mn3+ (aq) + 2 I- (aq) ----> 2 Mn2+ (aq) + 1 I2 (aq)
5) 1 I2 (aq) + I- (aq) ------> 1 I3 - (aq)
6) 1 I3 - (aq) + 2 S2O32- (aq) ----> 3 I- (aq) + S4O62- (aq)
Using these equation we will find the mole to mole ratio of O2 and 2S2O32- (aq)
"\\frac{1mol O_2}{4mol Mn(OH)_3}* \\frac{2mol Mn(OH)_3}{2mol Mn^{+3}}*\\frac{2mol Mn^{+3}}{1mol I_2}*\\frac{1mol I_2 }{1mol I_3^{-1}}" "*\\frac{1mol I_3^{-1}}{2 mol S_2O_3^{2-}}"
= "\\frac{1mol O_2}{4 mol S_2O_3^{2-}}"
The mole to mole ratio of O2 and S2O32- is 1 : 4. Using this we can find the moles of O2 present in the given sample of water.
Step 1 : To find the moles of thiosulfate (S2O32- ) present in 98.7 mL of 0.0125 mol/L sodium thiosulfate solution.
"Molarity = \\frac{moles \\space of \\space solute}{volume \\space of \\space solution \\space in \\space 'L'}"
98.7 mL in ‘L’ = 98.7 mL * 1 L/1000mL = 0.0987 L;
plug molarity = 0.0125 mol /L and volume = 0.0987 L in the formula, we have
0.0125 mol /L = moles of S2O32- / 0.0987 L
multiply both the side by 0.0987 L, we have
0.0125 mol /L * 0.0987L = moles of S2O32- / 0.0987 L * 0.0987 L
moles of S2O32- = 0.001234 moles .
Step 2 : To find the moles of O2 from moles of S2O32-
The mole to mole ratio of O2 and S2O32- is 1 : 4.
"So, moles \\space of\\space O_2 = 0.01234 mol S_2O_3^{2-}* \\frac{1 mol O_2}{4 mol S_2O_3^{2-} }"
0.0003084 mol O2 .
Step 3 : Convert 0.0003084 mol O2 to grams using molar mass of O2 .
molar mass of O2 = 2 * atomic mass of O = 2 * 15.999 g/mol = 31.998 g/mol
grams of O2 = 0.0003084 mol O2 * "\\frac{31.998 \\space g \\space O_2}{1\\space mol \\space O_2} = 0.009869 grams"
in 'mg' the mass of O2 is = "0.009869 g * \\frac{1000mg}{1g} = 9.87 mg;"
Comments
Leave a comment