Question #146795
1. Show that the atomic packing factor for FCC is 0.74.
2. Show that the atomic packing factor for BCC is 0.68.
3. Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol. Compute and compare its theoretical density with the experimental value, 7.87 g/cm3.
4. Rhodium has an atomic radius of 0.1345 nm and density of 12.41 g/cm3. Determine whether it has an FCC or BCC crystal structure.
5. The unit cell for tin has tetragonal symmetry, with a and b lattice parameters of 0.583 and 0.318 nm, respectively. If the density, atomic weight, and atomic radius are 7.30 g/cm3, 118.69 g/mol, and 0.151 nm, respectively, compute the atomic packing factor.
1
Expert's answer
2020-12-01T09:28:39-0500

1. APFAPF is the fraction of solid sphere volume in unit cell.

APF=APF= TotalvolumeofsphereTotalunitcellvolumeTotal volume of sphere\over Total unit cell volume == VsVcV_s\over V_c

Vs=(4).V_s=(4). 434\over3 ΠR3=\Pi R^3= 16316\over 3 ΠR3\Pi R^3

Vc=V_c= 16R316R^3 2\sqrt{2}

APF=APF= VsVcV_s\over V_c == 163ΠR316R32{{16\over3}\Pi R^3\over 16R^3\sqrt{2}} =0.74=0.74

2. BCC=0.68BCC=0.68

In terms of aa\infin RR

Atoms per unit cell

a=a= 43R4\over \sqrt{3R}

Coordination =no.8=no.8

APF=0.68APF=0.68

3. In finding the density of FeFe

ρ=\rho= nAFeVcNA_nA_{Fe}\over V_cN_A

For BCC,n=2BCC, n=2 atoms /unit cell, and

Vc=V_c= (( 4RV34R\over V3 )3)^3

ρ=\rho= nAFe(4RV3)3NA_nA_{Fe}\over {({4R\over V3})}^3N_A

(2atoms/unit)(55.85g/mol)[(4)(0.124×107/unitcell(6.023×1023atoms/mol)]{(2atoms/unit)(55.85g/mol)}\over[(4)(0.124\times 10^{-7}/unit cell(6.023\times10^{23}atoms/mol)] =7.90g/cm3=7.90g/cm^3

The actual value of Fe=7.87g/cm3Fe=7.87g/cm^3

4. Rd=0.1345nmRd=0.1345nm

ρ=12.41g/cm3\rho=12.41g/cm^3

Aw=102.91g/molA_w=102.91g/mol

ρ=\rho= nAwVcNAnA_w\over V_cN_A

VcBCC=aBCC3=V_{c_{BCC}}=a^3_{BCC}= (4RV3)3{({4R\over V3})}^3 nBCC=2n_{BCC}=2

VcBCC=aFCC3=(2R2)3V_{c_{BCC}}=a^3_{FCC}=(2R\sqrt{2})^3 nFCC=4n_{FCC}=4

For FCC, ρ=\rho= 4(102.91g/mol)((4)×(0.1345×107cm33)4(102.91g/mol)\over{{({(4)\times (0.1345\times 10^{-7}cm^3\over \sqrt{3}})}} ×6.023×1023atoms/mol\times 6.023\times 10^23atoms/mol

=11.41g/cm3=11.41g/cm^3

It is FCCFCC

5. a=0.583nma=0.583nm

b=0.318nmb=0.318nm

ρ=7.30g/cm3\rho=7.30g/cm^3

Aw=118.69g/molA_w=118.69g/mol

AR=0.151nmA_R=0.151nm

n=n= ρVcNAAsn\rho V_cN_A\over A_{sn}

=(7.3g/cm3)(5.832)(3.18×1024)(6.023×1023atoms/mol)=(7.3g/cm^3)(5.83^2)(3.18\times 10^{-24})(6.023\times 10^{23}atoms/mol)

=4atoms/unitcell=4atoms/ unit cell

\therefore APF=APF= VsVcV_s\over V_c == (4)(43ΠR3)(a)2(b)(4)({4\over 3}\Pi R^3)\over(a)^2(b)

== 4(43Π(1.52×108cm3))(a5.83×108cm2)(3.18×108)4({4\over 3}\Pi(1.52\times 10^{-8}cm^3))\over(a5.83\times 10^{-8}cm^2)(3.18\times 10^{-8})

=0.544=0.544


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS