Rate = k[A]a[B]b
"\\frac{Rate_1}{Rate_2} = (\\frac{[A_2]}{[A_1]})^a \\times (\\frac{[B_2]}{[B_1]})^b"
"\\frac{3.2 \\times 10^{-1}}{3.2 \\times 10^{-1}} = (\\frac{[1.5]}{[1.5]})^a \\times (\\frac{[2.5]}{[1.5]})^b"
"1 = 1^a \\times 1.67^b"
b = 0
"\\frac{Rate_3}{Rate_1} = (\\frac{[A_3]}{[A_1]})^a \\times (\\frac{[B_3]}{[B_1]})^b"
"\\frac{6.4 \\times 10^{-1}}{3.2 \\times 10^{-1}} = (\\frac{[3.0]}{[1.5]})^a \\times (\\frac{[1.5]}{[1.5]})^b"
"2 = 2^a \\times 1^b"
a = 1
Thus,
Rate = k[A]
Overall order of reaction = a + b = 1 + 0 = 1
Reaction is the first order.
Substituting values from Exp. 1 into the rate low:
"3.2 \\times 10^{-1} = k \\times 1.5"
"k = 0.213 \\;s^{-1} = 2.13 \\times 10^{-1} \\;s^{-1}"
Comments
Leave a comment