State the order of reaction with respect to a reactant, R, if:
a) the rate of reaction doubles when [R] doubles
b) the rate of reaction is unchanged when [R] triples
c) the rate of reaction reduces by a factor of four when [R] is halved
Solution
"v_R=-d[R]\/dt=k[R]^n" - rate equation [1]
a) "v_1=v_2\/2" and "[R_1]=[R_2]\/2"
Hense
"k[R_1]^n=k[R_2]^n\/2"
"([R_1]\/[R_2])^n=1\/2"
"n=log_{[R_1] \\above{2pt} [R_2]}0,5= log_{1 \\above{2pt} 2}0,5=1"
b) "v_1=v_2" and "[R_1]=[R_2]\/3"
Hence
"k[R_1]^n=k[R_2]^n"
"([R_1]\/[R_2])^n=1"
"n=log_{[R_1] \\above{2pt} [R_2]}1=0"
c)"v_1=4v_2" and "[R_1]=2[R_2]"
Hence
"k[R_1]^n=4k[R_2]^n"
"([R_1]\/[R_2])^n=4"
"n=log_{[R_1] \\above{2pt} [R_2]}4= log_{2}4=2"
Answer: a) "n=1", b) "n=0", c) "n=2"
Reference: https://en.wikipedia.org/wiki/Rate_equation
Comments
Leave a comment