Molar mass of naphthalene"=10\\times 12+8=128\\ g"
Moles in "1.05\\ g" naphthalene"=\\frac{1.05}{128}"
Let the total capacity of calorimeter per unit temperature change"=C"
Using energy balance,
"\\frac{1.05}{128}\\times 5150.5=C\\times 3.86\\implies C=10.946\\ KJ\/\\degree C"
Now coal is burnt.
Let "S" be the energy density "(" Energy stored in unit mass ")" ,
Applying energy balance,
"1.83S=10.946\\times 4.90\\implies S=29.31\\ KJ\/g"
Comments
Leave a comment