Question #131805

. Superphosphate, or sometimes called triple phosphate, is a commonly used water-soluble fertilizer. It is produced by the reaction: πΆπ‘Ž3 (𝑃𝑂4 )2 + 𝐻2𝑆𝑂4 β†’ πΆπ‘Ž(𝐻2𝑃𝑂4 )2 + πΆπ‘Žπ‘†π‘‚4 If we mix 200.0 g of πΆπ‘Ž3 (𝑃𝑂4 )2 with 133.5 g of 𝐻2𝑆𝑂4, how much πΆπ‘Ž(𝐻2𝑃𝑂4 )2 (in grams) can be produced?


1
Expert's answer
2020-09-05T14:41:01-0400

The Chemical equation is,

Ca3(PO4)2 +H2SO4 β†’Ca(H2PO4)2 +CaSO4 where,Ca3(PO4)2=200g and,H2SO4=133.5gCa_3(PO_4)_2\ +H_2SO_4\ \to Ca(H_2PO_4)_2\ +CaSO_4\ where,\newline Ca_3(PO_4)_2=200g\ and,\newline H_2SO_4=133.5g


A balanced chemical equation of the reaction is

Ca3(PO4)2 +2H2SO4 β†’ Ca(H2PO4)2 + 2CaSO4Ca_3(PO_4)_2\ +2H_2SO_4\ \to\ Ca(H_2PO_4)_2\ +\ 2CaSO_4


Calculate the number of moles of each reagent.

moles=massmolar massmoles=\dfrac{mass}{molar\ mass}


Ca3(PO4)2 mols =200310.18 =0.6448 molCa_3(PO_4)_2\ mols\ =\dfrac{200}{310.18}\ =0.6448\ mol


H2SO4 mols=133.598.079 =1.361 molH_2SO_4\ mols=\dfrac{133.5}{98.079}\ = 1.361\ mol


Express moles of each reagent in terms moles of the product

Ca(H2PO4)2 moles=0.6448βˆ—1molCa(H2PO4)21 molCa3(PO4)2Ca(H_2PO_4)_2\ moles=0.6448*\dfrac{1 molCa(H_2PO_4)_2}{1\ molCa_3(PO_4)_2}

=0.6448mol=0.6448mol


Ca(H2PO4)2 moles=1.361βˆ—1 molCa(H2PO4)22molesH2SO4Ca(H_2PO_4)_2\ moles=1.361*\dfrac{1\ molCa(H_2PO_4)_2}{2moles H_2SO_4}

=0.6805mol=0.6805mol


Since this is limiting reagent problem, the reagent that produces a smaller number of moles of the product is used in calculating the mass of the product.In this case Ca3(PO4)2Ca_3(PO_4)_2 has the smaller number of moles .


Mass=no.moles of Ca3(PO4)2βˆ— molar massCa(H2PO4)2Mass=no.moles\ of\ Ca_3(PO_4)_2*\ molar \ massCa(H_2PO_4)_2

=0.6448βˆ—234.1=150.9g=0.6448*234.1\newline =150.9g



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS