. Superphosphate, or sometimes called triple phosphate, is a commonly used water-soluble fertilizer. It is produced by the reaction: πΆπ3 (ππ4 )2 + π»2ππ4 β πΆπ(π»2ππ4 )2 + πΆπππ4 If we mix 200.0 g of πΆπ3 (ππ4 )2 with 133.5 g of π»2ππ4, how much πΆπ(π»2ππ4 )2 (in grams) can be produced?
The Chemical equation is,
"Ca_3(PO_4)_2\\ +H_2SO_4\\ \\to Ca(H_2PO_4)_2\\ +CaSO_4\\ where,\\newline Ca_3(PO_4)_2=200g\\ and,\\newline H_2SO_4=133.5g"
A balanced chemical equation of the reaction is
"Ca_3(PO_4)_2\\ +2H_2SO_4\\ \\to\\ Ca(H_2PO_4)_2\\ +\\ 2CaSO_4"
Calculate the number of moles of each reagent.
"moles=\\dfrac{mass}{molar\\ mass}"
"Ca_3(PO_4)_2\\ mols\\ =\\dfrac{200}{310.18}\\ =0.6448\\ mol"
"H_2SO_4\\ mols=\\dfrac{133.5}{98.079}\\ = 1.361\\ mol"
Express moles of each reagent in terms moles of the product
"Ca(H_2PO_4)_2\\ moles=0.6448*\\dfrac{1 molCa(H_2PO_4)_2}{1\\ molCa_3(PO_4)_2}"
"=0.6448mol"
"Ca(H_2PO_4)_2\\ moles=1.361*\\dfrac{1\\ molCa(H_2PO_4)_2}{2moles H_2SO_4}"
"=0.6805mol"
Since this is limiting reagent problem, the reagent that produces a smaller number of moles of the product is used in calculating the mass of the product.In this case "Ca_3(PO_4)_2" has the smaller number of moles .
"Mass=no.moles\\ of\\ Ca_3(PO_4)_2*\\ molar \\ massCa(H_2PO_4)_2"
"=0.6448*234.1\\newline =150.9g"
Comments
Leave a comment