U(x)=Uo(−2(xox)2+(xox)4)
(b) For force on the particle to be zero, F=−dxdU=0
−dxdU=−Uo[−4(xox)(xo1)+4(xox)3(xo1)]=0⟹ (xox)(1−(xox)2)=0
( As Uo,xo,4 are constants)
⟹xox=0⟹x=0 OR
⟹(xox)2=1⟹x=+xo OR x=−xo .
(e) To determine stable or unstable equilibrium, we check −dx2d2U .
If it is greater than zero,it is unstable equilibrium.
If it is lesser than zero,it is stable equilibrium.
If it is zero,it is neutral equilibrium.
−dx2d2U=−Uo[−xo24+12(xox)2(xo1)2]
For x=0, −dx2d2U=−Uo[−xo24+12(xox)2(xo1)2]= −Uo[−xo24+12(xo0)2(xo1)2]=xo24Uo>0 .
So,it is unstable equilibrium.
For x=+x0,
−dx2d2U=−Uo[−xo24+12(xox)2(xo1)2] =−Uo[−xo24+12(xox0)2(xo1)2]=−(xo)28UO<0
So,it is stable equilibrium.
For x=−x0,
−dx2d2U=−Uo[−xo24+12(xox)2(xo1)2] =−Uo[−xo24+12(xo−x0)2(xo1)2]=−(xo)28UO<0
So,it is stable equilibrium.
(f) U(x)=Uo(−2(xox)2+(xox)4)
For x=0,
U(x)=Uo(−2(xox)2+(xox)4) =Uo(−2(xo0)2+(xo0)4)=0
⟹UoU=Uo0=0
For x=+x0,
U(x)=Uo(−2(xox)2+(xox)4)= Uo(−2(xo+xo)2+(xo+xo)4)=−Uo
⟹UoU=Uo−Uo=−1
For x=−x0,
U(x)=Uo(−2(xox)2+(xox)4)= Uo(−2(xo−xo)2+(xo−xo)4)=−Uo
⟹UoU=Uo−Uo=−1
Comments