Question #131214
A system with effective mass (m) has a potential energy given by ;-
u(x) = Uo (-2 (x/xo)² + (x/xo)⁴)
(b) find the points where the force on the particle is zero
(e) classify these points as stable or unstable.
(f) calculate the value of U(x)/Uo at these equilibrium points.
1
Expert's answer
2020-09-01T07:37:11-0400

U(x)=Uo(2(xxo)2+(xxo)4)U(x) = U_o (-2 (\frac{x}{x_o})^2 + (\frac{x}{x_o})^4)

(b)(b) For force on the particle to be zero, F=dUdx=0F=-\frac{dU}{dx}=0

dUdx=Uo[4(xxo)(1xo)+4(xxo)3(1xo)]=0    -\frac{dU}{dx}=-U_o[-4(\frac{x}{x_o})(\frac{1}{x_o})+4(\frac{x}{x_o})^3(\frac{1}{x_o})]=0\implies (xxo)(1(xxo)2)=0(\frac{x}{x_o})(1-(\frac{x}{x_o})^2)=0

( As Uo,xo,4U_o,x_o,4 are constants)

    xxo=0    x=0\implies \frac{x}{x_o}=0\implies x=0 OR

    (xxo)2=1    x=+xo\implies (\frac{x}{x_o})^2=1 \implies x=+x_o OR x=xox=-x_o .

(e)(e) To determine stable or unstable equilibrium, we check d2Udx2-\frac{d^2U}{dx^2} .

If it is greater than zero,it is unstable equilibrium.

If it is lesser than zero,it is stable equilibrium.

If it is zero,it is neutral equilibrium.

d2Udx2=Uo[4xo2+12(xxo)2(1xo)2]-\frac{d^2U}{dx^2}=-U_o[-\frac{4}{x_o^2}+12(\frac{x}{x_o})^2(\frac{1}{x_o})^2]

For x=0,x=0, d2Udx2=Uo[4xo2+12(xxo)2(1xo)2]=-\frac{d^2U}{dx^2}=-U_o[-\frac{4}{x_o^2}+12(\frac{x}{x_o})^2(\frac{1}{x_o})^2]= Uo[4xo2+12(0xo)2(1xo)2]=4Uoxo2>0-U_o[-\frac{4}{x_o^2}+12(\frac{0}{x_o})^2(\frac{1}{x_o})^2]=\frac{4U_o}{x_o^2} >0 .

So,it is unstable equilibrium.

For x=+x0,x=+x_0,

d2Udx2=Uo[4xo2+12(xxo)2(1xo)2]-\frac{d^2U}{dx^2}=-U_o[-\frac{4}{x_o^2}+12(\frac{x}{x_o})^2(\frac{1}{x_o})^2] =Uo[4xo2+12(x0xo)2(1xo)2]=8UO(xo)2<0=-U_o[-\frac{4}{x_o^2}+12(\frac{x_0}{x_o})^2(\frac{1}{x_o})^2]=-\frac{8U_O}{(x_o)^2}<0

So,it is stable equilibrium.

For x=x0,x=-x_0,

d2Udx2=Uo[4xo2+12(xxo)2(1xo)2]-\frac{d^2U}{dx^2}=-U_o[-\frac{4}{x_o^2}+12(\frac{x}{x_o})^2(\frac{1}{x_o})^2] =Uo[4xo2+12(x0xo)2(1xo)2]=8UO(xo)2<0=-U_o[-\frac{4}{x_o^2}+12(\frac{-x_0}{x_o})^2(\frac{1}{x_o})^2]=-\frac{8U_O}{(x_o)^2}<0

So,it is stable equilibrium.


(f)(f) U(x)=Uo(2(xxo)2+(xxo)4)U(x) = U_o (-2 (\frac{x}{x_o})^2 + (\frac{x}{x_o})^4)

For x=0,x=0,

U(x)=Uo(2(xxo)2+(xxo)4)U(x) = U_o (-2 (\frac{x}{x_o})^2 + (\frac{x}{x_o})^4) =Uo(2(0xo)2+(0xo)4)=0=U_o (-2 (\frac{0}{x_o})^2 + (\frac{0}{x_o})^4)=0

    UUo=0Uo=0\implies \frac{U}{U_o}=\frac{0}{U_o}=0

For x=+x0,x=+x_0,

U(x)=Uo(2(xxo)2+(xxo)4)=U(x) = U_o (-2 (\frac{x}{x_o})^2 + (\frac{x}{x_o})^4)= Uo(2(+xoxo)2+(+xoxo)4)=UoU_o (-2 (\frac{+x_o}{x_o})^2 + (\frac{+x_o}{x_o})^4)=-U_o

    UUo=UoUo=1\implies \frac{U}{U_o}=\frac{-U_o}{U_o}=-1

For x=x0,x=-x_0,

U(x)=Uo(2(xxo)2+(xxo)4)=U(x) = U_o (-2 (\frac{x}{x_o})^2 + (\frac{x}{x_o})^4)= Uo(2(xoxo)2+(xoxo)4)=UoU_o (-2 (\frac{-x_o}{x_o})^2 + (\frac{-x_o}{x_o})^4)=-U_o

    UUo=UoUo=1\implies \frac{U}{U_o}=\frac{-U_o}{U_o}=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS