"U(x) = U_o (-2 (\\frac{x}{x_o})^2 + (\\frac{x}{x_o})^4)"
"(b)" For force on the particle to be zero, "F=-\\frac{dU}{dx}=0"
"-\\frac{dU}{dx}=-U_o[-4(\\frac{x}{x_o})(\\frac{1}{x_o})+4(\\frac{x}{x_o})^3(\\frac{1}{x_o})]=0\\implies" "(\\frac{x}{x_o})(1-(\\frac{x}{x_o})^2)=0"
( As "U_o,x_o,4" are constants)
"\\implies \\frac{x}{x_o}=0\\implies x=0" OR
"\\implies (\\frac{x}{x_o})^2=1 \\implies x=+x_o" OR "x=-x_o" .
"(e)" To determine stable or unstable equilibrium, we check "-\\frac{d^2U}{dx^2}" .
If it is greater than zero,it is unstable equilibrium.
If it is lesser than zero,it is stable equilibrium.
If it is zero,it is neutral equilibrium.
"-\\frac{d^2U}{dx^2}=-U_o[-\\frac{4}{x_o^2}+12(\\frac{x}{x_o})^2(\\frac{1}{x_o})^2]"
For "x=0," "-\\frac{d^2U}{dx^2}=-U_o[-\\frac{4}{x_o^2}+12(\\frac{x}{x_o})^2(\\frac{1}{x_o})^2]=" "-U_o[-\\frac{4}{x_o^2}+12(\\frac{0}{x_o})^2(\\frac{1}{x_o})^2]=\\frac{4U_o}{x_o^2} >0" .
So,it is unstable equilibrium.
For "x=+x_0,"
"-\\frac{d^2U}{dx^2}=-U_o[-\\frac{4}{x_o^2}+12(\\frac{x}{x_o})^2(\\frac{1}{x_o})^2]" "=-U_o[-\\frac{4}{x_o^2}+12(\\frac{x_0}{x_o})^2(\\frac{1}{x_o})^2]=-\\frac{8U_O}{(x_o)^2}<0"
So,it is stable equilibrium.
For "x=-x_0,"
"-\\frac{d^2U}{dx^2}=-U_o[-\\frac{4}{x_o^2}+12(\\frac{x}{x_o})^2(\\frac{1}{x_o})^2]" "=-U_o[-\\frac{4}{x_o^2}+12(\\frac{-x_0}{x_o})^2(\\frac{1}{x_o})^2]=-\\frac{8U_O}{(x_o)^2}<0"
So,it is stable equilibrium.
"(f)" "U(x) = U_o (-2 (\\frac{x}{x_o})^2 + (\\frac{x}{x_o})^4)"
For "x=0,"
"U(x) = U_o (-2 (\\frac{x}{x_o})^2 + (\\frac{x}{x_o})^4)" "=U_o (-2 (\\frac{0}{x_o})^2 + (\\frac{0}{x_o})^4)=0"
"\\implies \\frac{U}{U_o}=\\frac{0}{U_o}=0"
For "x=+x_0,"
"U(x) = U_o (-2 (\\frac{x}{x_o})^2 + (\\frac{x}{x_o})^4)=" "U_o (-2 (\\frac{+x_o}{x_o})^2 + (\\frac{+x_o}{x_o})^4)=-U_o"
"\\implies \\frac{U}{U_o}=\\frac{-U_o}{U_o}=-1"
For "x=-x_0,"
"U(x) = U_o (-2 (\\frac{x}{x_o})^2 + (\\frac{x}{x_o})^4)=" "U_o (-2 (\\frac{-x_o}{x_o})^2 + (\\frac{-x_o}{x_o})^4)=-U_o"
"\\implies \\frac{U}{U_o}=\\frac{-U_o}{U_o}=-1"
Comments
Leave a comment