Solution:
T = 63°C = 336.15 K
V = 1.73 L
R = 0.08206 L atm mol-1 K-1
Mr(NH3) = 17.031 g/mol.
Moles of NH3 = n(NH3) = m(NH3) / M(NH3) = (27 g) / (17.031 g/mol) = 1.5853 moles.
Part "i":
The Ideal Gas Law can be written as: PV = nRT.
Let's calculate the pressure using the Ideal Gas Law:
PV = nRT
(P * 1.73 L) = (1.5853 mol * 0.08206 L atm mol-1 K-1 * 336.15 K)
P = (1.5853 mol * 0.08206 L atm mol-1 K-1 * 336.15 K) / (1.73 L) = 25.28 atm
Pi = 25.28 atm.
Part "ii":
The Van der Waals Equation can be written as: [P + an2/V2] * [V - nb] = nRT,
where a and b - specific constants for NH3
a = 4.166 L2 atm mol-2
b = 0.03713 L mol-1
Let's calculate the pressure using the Van der Waals Equation:
[P + an2/V2] * [V - nb] = nRT
[P + 4.166*1.58532 / 1.732 ] * [1.73 - 1.5853*0.03713] = 1.5853 * 0.08206 * 336.15
[P + 3.4982] * 1.6711 = 43.7297
P + 3.4982 = 26.1682;
Pii = 22.67 atm.
Answer:
Pi = 25.28 atm;
Pii = 22.67 atm.
Comments
Leave a comment