pKa EPH+ + pKb EP = 14, so pKa EPH+ = 14 - pKb EP = 14 - 3.86 = 10.14. Therefore,
Ka EPH+ = 10^-pKa = 10^-10.14 = 7.2 x 10^-11.
Set up an ICE chart.
Molarity . . . . .EPH+ + H2O <==> H3O+ + EP
Initial . . . . . .0.0131 . . . . . . . . . . . . . .0 . . . . . .0
Change . . . . .-x . . . . . . . . . . . . . . . . .x . . . . . .x
Equilibrium . .0.0131-x . . . . . . . . . . . . x . . . . . .x
Ka = [H3O+][EP] / [EPH+] = (x)(x) / (0.0131-x) = 7.2 x 10^-11
With such a small Ka, the -x term is going to be negligible compared to 0.0131, so we drop it.
x^2 / 0.0131 = 7.2 x 10^-11
x^2 = 9.5 x 10^-13
x = 9.7 x 10^-7 = [H3O+]
pH = -log[H3O+] = -log (9.7 x 10^-7) = 6.01
Comments
Leave a comment