"H_2S(g)\\longrightarrow H_2(g) + S(g)"
here it is given as Kp=0.719 atm and p(H2S)=.193 atm
so we will take x part of H2S is change,
so we can write the equilibrium reaction as
"H_2S(g)\\longrightarrow H_2(g) + S(g)"
0.193 0 0
0.193-x x x
we can write for equilibrium constant Kp as
"K_p= \\frac{P_{H_2}\\times P_{S}}{P_{H_2S}}"
"0.719= \\frac{x\\times x}{0.193-x}"
0.139-0.719"x=x^2"
"x^2+0.719x-0.139=0"
using quadratic formula we can find
"x=\\frac{-0.719 \\pm\\sqrt{(.719^2-(4\\times1\\times(-.139)))}}{2}"
x= "\\frac{-0.719+1.04}{2}=0.1605,x=\\frac{-0.719-1.04}{2}=-0.8795"
so here , "P_{H_2}=P_S=0.1605 atm, and P_{H_2S}=0.719-0.1605=0.5585 atm"
Here total pressure will be sum of all
PT= 0.1605+0.1605+0.5585=0.8795 atm
"P_T= 0.8795 atm"
Comments
Leave a comment