"H_2SO_4(aq) + Ba(OH)_2(aq) \\rightarrow BaSO_4(s) + 2H_2O(l)"
1) Find the volume of acid solution:
"\\Delta V = V_{final}-V_{initial} = 41.90-34.42 = 7.48 mL"
2) Find the moles of "H_2SO_4" in this solution
"7.48\\times10^{-3}(\\frac{0.472 mol H_2SO_4}{1L})=3.53\\times10^{-3}mol H_2SO_4"
3) Find moles of "Ba(OH)_2"
"3.53\\times 10^{-3} moles H_2SO4 (\\frac{1 mole Ba(OH)_2}{1 mole H_2SO_4})=3.53\\times10^{-3} moles Ba(OH)_2"
4) Find the volume of "Ba(OH)_2" used:
"3.53\\times10^{-3} mol Ba(OH)_2(\\frac{1L}{0.388 mol Ba(OH)_2})=9.098\\times 10^{-3} L=9.098 mL"
5) Find the final volume reading on the base burret
"V_{final} = V_{initial} + \\Delta V = 63.25 mL + 9.098 mL =72.35 mL"
Answer: 72.35 mL
Comments
Leave a comment