"N_2=\n\n(\\sigma_{1s})^2(\\sigma^*_{1s})^2\n\n(\n\u03c3\n_{2s}\n)^\n2\n(\n\u03c3^\n*\n_{2s}\n)^\n2\n(\n\u03c0\n_{2px}\n)^\n2\n(\n\u03c0\n_{2py}\n)^2\n\n(\n\u03c3\n_{2pz}\n)^\n2\n(\n\u03c0\n*_\n{2px}\n)\n^0\n(\n\u03c0^\n*_{2py})^0(\\pi^*_{2pz})^0"
"bond \\ order=\\frac{1}{2}\\times(10-4)=3"
"NO=N_2=( \\sigma_{1\ns}\n)^2(\\sigma^*_{1s})^2\n(\n\u03c3\n_{2s}\n)^\n2\n(\n\u03c3^\n*\n_{2s}\n)^\n2\n(\n\u03c0\n_{2px}\n)^\n2\n(\n\u03c0\n_{2py}\n)^2\n\n(\n\u03c3\n_{2pz}\n)^\n1\n(\n\u03c0\n*_\n{2px}\n)\n^0\n(\n\u03c0^\n*_{2py})^0(\\pi^*_{2pz})^0"
bond order ="\\frac{1}{2}\\times(9-4)=2.5"
"N_2" has not any unpaired electron so it is diamagnetic whereas NO has 1 unpaired electron so it is paramagnetic.
Comments
Leave a comment