nRT=PV (Mendeleev-Klapeyrones"s law : ideal gas equation), n - number of moles, R - gase constant 8.314 J/K*mole = 0.0821 l *atm/mol * K , T - absolutly temperature K,
P - pressure, - V - volume ; D - density
(4) 1 moles H2S weight: 34 g;
T(C)+273,15=T(K)
V=nRT/P
V=1 * 0.0821 (l *atm/mol * K ) * 329,15 * K / (967/760 atm)
V = 21,2385 l =21,24 l
D = Weight / volume
D = 34 g / 21,24 l = 1,600 g/l=1,6 g/l
(2) P = const = 1 atm
T1 =295,13K
V1=2,54 l
T2=76,15K
nRT=PV
nR/P = V / T => n =const, R= const, P = const, V/T = const => V1/T1 =V2/T2
V2=V1*T2/T1
V2=0,65537=0,655 l
(1)
nRT=PV, n - const, R -const, T -const, PV -const => P1V1=P2V2
P1=19,8 atm
V1=50 l
P2=0,974 atm
V2=?
V2=P1V1/P2 => 19,8atm*50 l/0,974atm = 1016,4 l
(3) n(O2)=weight/MolarWeight = 91,3g/32g=2,85 mole, R - 0.0821 l*atm/mole*k
V=8,58 l
P=?
T(K)=294,15
nRT=PV
P=nRT/V
P=8,021 atm
Van-Der-Vaals equation:
(p + n2 *a2/V2)(V-n*b)=nRT
As a first approximation, we take the volume V=V1 obtained from the ideal gas equation
V1=nRT/P
V1=V
V1=8,58L
P1=8,021 atm
Pi=n2 *a2/V21
Pi=0,015 atm
second approximation
V2=nRT/(p+pi)+nb
V2=8,5808+0,09006=8,67L
V2=nRT/P
V2=2,85*0,0821*294,15/P
P=7,94
pi2=n2*a2/V22
pi2=0,00199
third(?)
V3=nRT/(p+pi2) +nb=8,7L
P=7,92
Further deviations in approximations of insignificant
Comments
Leave a comment